Skip to main content
Log in

Re-evaluation of the First and Second Stoichiometric Dissociation Constants of Oxalic Acid at Temperatures from 0 to 60 °C in Aqueous Oxalate Buffer Solutions with or without Sodium or Potassium Chloride

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Equations were developed for the calculation of the first stoichiometric (molality scale) dissociation constant (K m1) of oxalic acid in buffer solutions containing oxalic acid, potassium hydrogen oxalate, and potassium chloride from the determined thermodynamic values of this dissociation constant (K a1) and the molalities of the components in the solutions. Similar equations were also developed for the second stoichiometric dissociation constant (K m2) of this acid in buffer solutions containing sodium or potassium hydrogen oxalate, oxalate and chloride. These equations apply at temperatures from 0 to 60 °C up to ionic strengths of 1.0 mol⋅kg−1 and they have been based on single-ion activity coefficient equations of the Hückel type. For the equations for K m1, the activity parameters of oxalate species and the K a1 values were determined at various temperatures from the Harned cell data of a recent tetroxalate buffer paper (Juusola et al., J. Chem. Eng. Data 52:973–976, 2007). By using the resulting equations for K m1, the activity parameters of oxalate species for K m2 and the K a2 values were then determined from the new Harned cell data and from those of Pinching and Bates (J. Res. Natl. Bur. Stand. (U.S.) 40:405–416, 1948) for solutions of sodium or potassium oxalates with NaCl or KCl. The resulting simple equations for calculation of K m1 and K m2 for oxalic acid were tested with all important thermodynamic data available in the literature for this purpose. The equations for ln (K a1) and ln (K a2) are of the form ln (K a)=a+b(t/°C)+c(t/°C)2. The coefficients for ln (K a1) are the following: a=−2.8737, b=0.000159, and c=−0.00009. The corresponding coefficients for ln (K a2) are −9.6563, −0.003059, and −0.000125, respectively. The new activity coefficient equations were used to evaluate the pH values of the tetroxalate buffer solution (i.e., of the 0.05 mol⋅kg−1 KH3C4O8 solution) for comparison with the pH values recommended by IUPAC at temperatures from 0 to 60 °C and to develop a new two-component oxalate pH buffer of 0.01 mol⋅kg−1 KHC2O4+0.05 mol⋅kg−1 Na2C2O4 for which pH values are given from 0 to 60  °C. Values of p(m H) calculated from these equations are tabulated for these buffers as well as for buffer solutions with KCl and KH3C4O8 as the major component and minor component, respectively. Tables of p(m H) are also presented for 0.001 mol⋅kg−1 KHC2O4+0.005 mol⋅kg−1 Na2C2O4 solutions in which KCl is the supporting electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1959)

    Google Scholar 

  2. Bower, V.E., Bates, R.G., Smith, E.R.: pH of solutions of potassium tetroxalate from 0 to 60 °C. J. Res. Natl. Bur. Stand. 51, 189–194 (1953)

    CAS  Google Scholar 

  3. Bates, R.G.: Determination of pH; Theory and Practice, 2nd edn. Wiley, New York (1973)

    Google Scholar 

  4. Covington, A.K., Bates, R.G., Durst, R.A.: Definition of pH scales, standard reference values, measurements of pH and related terminology. Pure Appl. Chem. 57, 531–542 (1985)

    Article  Google Scholar 

  5. Buck, R.P., Rondinini, S., Covington, A.K., Baucke, F.G.K., Brett, C.M.A., Camoes, M.F., Milton, M.J.T., Mussini, T., Naumann, R., Pratt, K.W., Spitzer, P., Wilson, G.S.: Measurement of pH. Definition, standards, and procedures. Pure Appl. Chem. 74, 2169–2200 (2002)

    Article  CAS  Google Scholar 

  6. Barriada, J.E., Brandariz, I., Kataky, R., Covington, A.K., Sastre de Vicente, M.E.: pH Standardization of 0.05 mol⋅kg−1 tetraoxalate buffer: application of the Pitzer formalism. J. Chem. Eng. Data 46, 1292–1296 (2001)

    Article  CAS  Google Scholar 

  7. Juusola, P.M., Partanen, J.I., Vahteristo, K.P., Minkkinen, P.O., Covington, A.K.: pH standardization of 0.05 mol⋅kg−1 tetraoxalate buffer at temperatures from (0 to 45) °C with added KCl molality up to 1.0 mol⋅kg−1. J. Chem. Eng. Data 52, 973–976 (2007)

    Article  CAS  Google Scholar 

  8. Lito, M.J.G., Camões, M.F.G., Ferra, M.I.A., Covington, A.K.: Calculation of reference pH values for standard solutions from the corresponding acid dissociation constants. Anal. Chim. Acta 239, 129–137 (1990)

    Article  Google Scholar 

  9. Covington, A.K., Ferra, M.I.A.: A Pitzer mixed electrolyte solution theory approach to assignment of pH to standard buffer solution. J. Solution Chem. 23, 1–10 (1994)

    Article  CAS  Google Scholar 

  10. Chan, C.Y., Eng, Y.W., Eu, K.S.: Pitzer single-ion activity coefficients and pH for aqueous solutions of potassium hydrogen phthalate in mixtures with KCl and with NaCl at 298.15 K. J. Chem. Eng. Data 40, 685–691 (1995)

    Article  CAS  Google Scholar 

  11. Camões, M.F., Lito, M.J.G., Ferra, M.I.A., Covington, A.K.: Consistency of pH standard values with the corresponding thermodynamic acid dissociation constants. Pure Appl. Chem. 69, 1325–1333 (1997)

    Article  Google Scholar 

  12. de Mendonça, A.J.G., Ferra, M.I.A.: Application of the Pitzer theory to the evaluation of pH of the phthalate standard solution. Port. Electrochim. Acta 15, 245–249 (1997)

    Google Scholar 

  13. Ferra, M.I.A.: A Pitzer theory approach to assignment of pH to standard buffer solutions. Port. Electrochim. Acta 16, 133–142 (1998)

    CAS  Google Scholar 

  14. Partanen, J.I., Minkkinen, P.O.: Redetermination of the second dissociation constant of phosphoric acid and calculation of the pH values of the pH standards based on solutions of dihydrogen and hydrogen phosphate ions at 298.15 K. Acta Chem. Scand. 50, 1081–1086 (1996)

    Article  CAS  Google Scholar 

  15. Partanen, J.I., Minkkinen, P.O.: Equations for calculation of the pH of buffer solutions containing sodium or potassium dihydrogen phosphate, sodium hydrogen phosphate, and sodium chloride at 25 °C. J. Solution Chem. 26, 709–727 (1997)

    Article  CAS  Google Scholar 

  16. Partanen, J.I., Minkkinen, P.O.: Equations for the calculation of the pH of buffer solutions containing potassium hydrogen phthalate, dipotassium phthalate, and potassium chloride at 298.15 K. J. Chem. Eng. Data 42, 805–813 (1997)

    Article  CAS  Google Scholar 

  17. Kettler, R.M., Palmer, D.A., Wesolowski, D.J.: Dissociation quotients of oxalic acid in aqueous sodium chloride media to 175 °C. J. Solution Chem. 20, 905–927 (1991)

    Article  CAS  Google Scholar 

  18. Kettler, R.M., Wesolowski, D.J., Palmer, D.A.: Dissociation constants of oxalic acid in aqueous sodium chloride and sodium trifluoromethanesulfonate media to 175 °C. J. Chem. Eng. Data 43, 337–350 (1998)

    Article  CAS  Google Scholar 

  19. Bešter-Rogač, M., Tomšič, M., Barthel, J., Neueder, R., Apelblat, A.: Conductivity studies of dilute aqueous solutions of oxalic acid and neutral oxalates of sodium, potassium, cesium, and ammonium from 5 to 35 °C. J. Solution Chem. 31, 1–18 (2002)

    Article  Google Scholar 

  20. Goldberg, R.N., Kishore, N., Lennen, R.M.: Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data 31, 231–370 (2002)

    Article  CAS  Google Scholar 

  21. Parton, H.N., Gibbons, R.C.: The thermodynamic dissociation constants of oxalic acid. Trans. Faraday Soc. 35, 542–545 (1939)

    Article  CAS  Google Scholar 

  22. Darken, L.S.: The ionization constants of oxalic acid from conductance measurements. J. Am. Chem. Soc. 63, 1007–1011 (1941)

    Article  CAS  Google Scholar 

  23. Kurz, J.L., Farrar, J.M.: The entropies of dissociation of some moderately strong acids. J. Am. Chem. Soc. 91, 6057–6062 (1969)

    Article  CAS  Google Scholar 

  24. McAuley, A., Nancollas, G.H.: Thermodynamics of ion association. Part VII. Some transition-metal oxalates, J. Chem. Soc. A 2215-2221 (1961)

  25. Bates, R.G., Pinching, G.D., Smith, E.R.: pH standards of high acidity and high alkalinity and the practical scale of pH. J. Res. Natl. Bur. Stand. 45, 418–429 (1950)

    CAS  Google Scholar 

  26. Harned, H.S., Fallon, L.D.: The second ionization constant of oxalic acid from 0 to 50°. J. Am. Chem. Soc. 61, 3111–3113 (1939)

    Article  CAS  Google Scholar 

  27. Pinching, G.D., Bates, R.G.: Second dissociation constant of oxalic acid from 0° to 50 °C, and the pH of certain oxalate buffer solutions. J. Res. Natl. Bur. Stand. 40, 405–416 (1948)

    CAS  Google Scholar 

  28. Hückel, E.: Zur Theorie konzentrierterer wässeriger Lösungen starker Elektrolyte. Physik. Z. 26, 93–147 (1925)

    Google Scholar 

  29. Partanen, J.I., Covington, A.K.: Determination of stoichiometric dissociation constants of acetic acid in aqueous solutions containing acetic acid, sodium acetate, and sodium chloride at (0 to 60) °C J. Chem. Eng. Data 48, 797–807 (2003)

    Article  CAS  Google Scholar 

  30. Partanen, J.I., Covington, A.K.: Re-evaluation of stoichiometric dissociation constants from electrochemical cell data for propionic and n-butyric acids at (0 to 60) °C and for some other aliphatic carboxylic acids at (18 or 25) °C in aqueous sodium chloride solutions. J. Chem. Eng. Data 49, 394–406 (2004)

    Article  CAS  Google Scholar 

  31. Partanen, J.I., Covington, A.K.: Re-evaluation of stoichiometric dissociation constants from electrochemical cell data for formic acid at temperatures from (0 to 60) °C and for some other aliphatic carboxylic acids at (18 or 25) °C in aqueous potassium chloride solutions. J. Chem. Eng. Data 50, 497–507 (2005)

    Article  CAS  Google Scholar 

  32. Partanen, J.I., Covington, A.K.: Re-evaluation of the second stoichiometric dissociation constants of phosphoric acid at temperatures from (0 to 60) °C in aqueous buffer solutions with or without NaCl or KCl. 1. Estimation of the parameters for the Hückel model activity coefficient equations. J. Chem. Eng. Data 50, 1502–1509 (2005)

    Article  CAS  Google Scholar 

  33. Partanen, J.I., Covington, A.K.: Re-evaluation of the second stoichiometric dissociation constants of phosphoric acid at temperatures from (0 to 60) °C in aqueous buffer solutions with or without NaCl or KCl. 2. Tests and use of the resulting Hückel model equations. J. Chem. Eng. Data 50, 2065–2073 (2005)

    Article  CAS  Google Scholar 

  34. Partanen, J.I., Covington, A.K.: Re-evaluation of the first and second stoichiometric dissociation constants of phthalic acid at temperatures from (0 to 60) °C in aqueous phthalate buffer solutions with or without potassium chloride. 1. Estimation of the parameters for the Hückel model activity coefficient equations for calculation of the second dissociation constant. J. Chem. Eng. Data 51, 777–784 (2006)

    Article  CAS  Google Scholar 

  35. Partanen, J.I., Covington, A.K.: Re-evaluation of the first and second stoichiometric dissociation constants of phthalic acid at temperatures from (0 to 60) °C in aqueous phthalate buffer solutions with or without potassium chloride. 2. Estimation of parameters for the model for the first dissociation constants and tests and use of the resulting activity coefficient equations. J. Chem. Eng. Data 51, 2065–2073 (2006)

    Article  CAS  Google Scholar 

  36. Partanen, J.I., Juusola, P.M., Vahteristo, K.P., de Mendonça, A.J.G.: Re-evaluation of the activity coefficients of aqueous hydrochloric acid solutions up to a molality of 16.0 mol⋅kg−1 using the Hückel and Pitzer equations at temperatures from 0 to 50 °C. J. Solution Chem. 36, 39–59 (2007)

    Article  CAS  Google Scholar 

  37. Archer, D.G., Wang, P.: The dielectric constant of water and Debye–Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411 (1990)

    Article  CAS  Google Scholar 

  38. Partanen, J.I., Covington, A.K.: Re-evaluation of the activity coefficients of aqueous hydrochloric acid solutions up to a molality of 2.0 using two-parameter Hückel and Pitzer equations. Part II. Results from 0 to 95 °C. J. Solution Chem. 31, 197–210 (2002)

    Article  CAS  Google Scholar 

  39. Harned, H.S., Ehlers, R.W.: The dissociation constant of acetic acid from 0 to 35° centigrade. J. Am. Chem. Soc. 54, 1350–1357 (1932)

    Article  CAS  Google Scholar 

  40. Harned, H.S., Ehlers, R.W.: The thermodynamics of aqueous hydrochloric acid solutions from electromotive force measurements. J. Am. Chem. Soc. 55, 2179–2193 (1933)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko I. Partanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Partanen, J.I., Juusola, P.M. & Covington, A.K. Re-evaluation of the First and Second Stoichiometric Dissociation Constants of Oxalic Acid at Temperatures from 0 to 60 °C in Aqueous Oxalate Buffer Solutions with or without Sodium or Potassium Chloride. J Solution Chem 38, 1385–1416 (2009). https://doi.org/10.1007/s10953-009-9443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9443-y

Keywords

Navigation