Skip to main content
Log in

Estimation of the Effectiveness of the Phosphate Group in Binary Phosphoserine/Biogenic Amine Systems in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Adduct formation in the binary systems of O-phospho-L-serine with biogenic amines (putrescine, spermidine or spermine) has been investigated. The overall stability constants of the adducts and the equilibrium constants of their formation have been determined using computer analysis of potentiometric data. Ion-ion interactions have been established to occur in the identified molecular complexes. The potential reaction centers are phosphate, carboxylate and amine groups from phosphorylated serine as well as the –NH +3 and –NH +2 – groups from polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated (positive reaction center) and the phosphoserine is partly or totally deprotonated (negative reaction center). The stability of the molecular complexes formed in the studied systems depends on the acid-base character of the substrates and on the structure of the reacting molecules. Sites of interactions in the bioligands have been deduced on the basis of the results of the equilibrium study and analysis of the changes in the positions of signals in the 13C and 31P NMR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sigel, H., Massoud, S.S.: Metal ion coordinating properties of pyrimidine-nucleoside 5′-monophosphates (CMP, UMP, TMP) and of simple phosphate monoesters, including D-ribose 5′-monophosphate. Establishment of relations between complex stability and phosphate basicity. Inorg. Chem. 27, 1447–1453 (1988). doi:10.1021/ic00281a030

    Article  Google Scholar 

  2. Casassas, E., Izquierdo-Ridorsa, A., Tauler, R.: Study of the acid-base behaviour and Cu(II) complexing properties of uracil and hypoxanthin-derived nucleotides in aqueous solution. J. Inorg. Biochem. 56, 187–199 (1994). doi:10.1016/0162-0134(94)85005-4

    Article  CAS  Google Scholar 

  3. Thomas, T., Thomas, T.J.: Polyamines in cell growth and cell death. Cell. Mol. Life Sci. 58, 244–258 (2001). Medline doi:10.1007/PL00000852

    Article  CAS  Google Scholar 

  4. Srinath, P., McQuarrie, S.A., Suresh, M.R.: Comparative uptake of polyamines by prostate and non-prostate cancer cell lines. Nucl. Med. Biol. 29, 497–503 (2002). Medline doi:10.1016/S0969-8051(02)00287-1

    Article  CAS  Google Scholar 

  5. Keniry, M.A.: A comparison of the association of spermine with duplex and quadruplex DNA by NMR. FEBS Lett. 542, 153–158 (2003). Medline doi:10.1016/S0014-5793(03)00373-9

    Article  CAS  Google Scholar 

  6. D’Agostino, L., Luccia, A.: Polyamines interact with DNA as molecular aggregates. Eur. J. Biochem. 269, 4317–4325 (2002). Medline doi:10.1046/j.1432-1033.2002.03128.x

    Article  Google Scholar 

  7. Pegg, A.E.: Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res. 48, 759–774 (1988)

    CAS  Google Scholar 

  8. Jänne, J., Alhonen, L., Leinonen, P.: Polyamines: from molecular biology to clinical applications. Ann. Med. 23, 241–259 (1991). Medline doi:10.3109/07853899109148056

    Article  Google Scholar 

  9. Fiskin, M., Beer, M.: Determination of base sequence in nucleic acids with the electron microscope. IV. Nucleoside complexes with certain metal ions. Biochem. 4, 1289–1294 (1965). Medline doi:10.1021/bi00883a012

    Article  CAS  Google Scholar 

  10. Cohen, S.S.: A Guide to the Polyamines. Oxford University Press, Oxford (1998)

    Google Scholar 

  11. Tabor, C.W., Tabor, H.: Polyamines. Annu. Rev. Biochem. 53, 749–790 (1984). Medline doi:10.1146/annurev.bi.53.070184.003533

    Article  CAS  Google Scholar 

  12. Lomozik, L., Gasowska, A., Bolewski, L.: Noncovalent interactions in polyamine/nucleoside (or diaminocarboxylate) systems studied by potentiometric and NMR techniques. J. Chem. Soc., Perkin Trans. 2, 1161–1165 (1997). doi:10.1039/a607656d

    Google Scholar 

  13. Lomozik, L., Gasowska, A.: Investigations of binding sites and stability of complexes formed in ternary Cu(II)-adenosine or cytidine-putrescine systems. J. Inorg. Biochem. 62, 103–115 (1996). doi:10.1016/0162-0134(95)00120-4

    Article  CAS  Google Scholar 

  14. Gasowska, A., Lomozik, L., Jastrzab, R.: Mixed-ligand complexes of copper(II) ions with AMP and CMP in the systems with polyamines and non-covalent interaction between bioligands. J. Inorg. Biochem. 78, 139–147 (2000). Medline doi:10.1016/S0162-0134(99)00223-8

    Article  CAS  Google Scholar 

  15. Lomozik, L., Jastrzab, R., Gasowska, A.: Interactions in binary and ternary systems including Cu(II), uridine, uridine 5′-monophosphate or diamine. Polyhedron 19, 1145–1154 (2000). doi:10.1016/S0277-5387(00)00375-2

    Article  CAS  Google Scholar 

  16. Cohen, P.: The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002). Medline doi:10.1038/ncb0502-e127

    Article  CAS  Google Scholar 

  17. Elliot, W.H., Elliot, D.C.: Biochemistry and Molecular Biology. Oxford University Press, Oxford (2002), p. 296

    Google Scholar 

  18. Yarligana, S., Fuzery, A.K., Ogretir, C., Csizmadia, I.G.: Deciphering the ‘biological Morse-code’: a preliminary ab initio study of phosphoserine. J. Mol. Struc.-Theochem. 666–667, 269–271 (2003). doi:10.1016/j.theochem.2003.08.116

    Article  Google Scholar 

  19. Irving, M.H., Miles, M.G., Pettit, L.D.: A study of some problems in determining the stoichiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal. Chim. Acta 38, 475–488 (1967). doi:10.1016/S0003-2670(01)80616-4

    Article  CAS  Google Scholar 

  20. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996). Medline doi:10.1016/0039-9140(96)01958-3

    Article  CAS  Google Scholar 

  21. Ingri, N., Kakolowicz, W., Sillen, L.G., Warqvist, B.: High-speed computers as a supplement to graphical methods-V. Haltafall, a general program for calculating the composition of equilibrium mixtures. Talanta 14, 1261–1286 (1967). Medline doi:10.1016/0039-9140(67)80203-0

    Article  CAS  Google Scholar 

  22. Lomozik, L., Jaskolski, M., Wojciechowska, A.: A multistage verification procedure for the selection of models in the studies of complex formation equilibria. Pol. J. Chem. 65, 1797–1807 (1991)

    CAS  Google Scholar 

  23. Glasoe, P.K., Long, F.A.: Use of glass electrodes to measure acidities in deuterium oxide. J. Phys. Chem. 64, 188–189 (1960). doi:10.1021/j100830a521

    Article  CAS  Google Scholar 

  24. Zachariou, M., Traverso, I., Spiccia, L., Hearn, M.T.W.: Potentiometric investigations into the acid-base and metal ion binding properties of immobilized metal ion affinity chromatographic (IMAC) adsorbents. J. Phys. Chem. 100, 12680–12690 (1996). doi:10.1021/jp9601476

    Article  CAS  Google Scholar 

  25. Jastrzab, R., Lomozik, L.: Coordination mode in the binary systems of copper(II)/O-phospho-L-serine. J. Coord. Chem. 62, 710–720 (2009). doi:10.1080/00958970802317855

    Article  CAS  Google Scholar 

  26. Jastrzab, R., Lomozik, L.: Non-covalent interaction in binary thymidine/polyamine systems in aqueous solution. J. Solution Chem. 37, 1015–1029 (2008). doi:10.1007/s10953-008-9283-1

    Article  CAS  Google Scholar 

  27. Lomozik, L., Jastrzab, R.: Non-covalent and coordination interactions in Cu(II) systems with uridine, uridine 5’-monophosphate and triamine or tetramine as biogenic amine analogues in aqueous solutions. J. Inorg. Biochem. 97, 179–190 (2003). Medline doi:10.1016/S0162-0134(03)00276-9

    Article  CAS  Google Scholar 

  28. Lomozik, L., Gasowska, A.: Complexes of copper(II) with spermine and non-covalent interactions in the systems including nucleosides or nucleotides. J. Inorg. Biochem. 72, 37–47 (1998). doi:10.1016/S0162-0134(98)10060-0

    Article  CAS  Google Scholar 

  29. Jastrzab, R., Lomozik, L.: Effectiveness of phosphate groups in noncovalent interactions in binary adenosine nucleotides/phosphoserine aqueous systems. J. Solution Chem. 38, 35–46 (2009). doi:10.1007/s10953-008-9352-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lechoslaw Lomozik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jastrzab, R., Lomozik, L. Estimation of the Effectiveness of the Phosphate Group in Binary Phosphoserine/Biogenic Amine Systems in Aqueous Solution. J Solution Chem 38, 1005–1014 (2009). https://doi.org/10.1007/s10953-009-9424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9424-1

Keywords

Navigation