Skip to main content
Log in

Determination of Protonation Constants of O-Phospho-l-serine in Aqueous Solution: Potentiometry, Microcalorimetry, NMR Spectroscopy and Quantum Chemical Calculations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

O-Phospho-l-serine is one of the naturally occurring phosphorylated amino acids, having important pharmacological activity and bioactivity. The protonation constants of O-phospho-l-serine were determined by means of potentiometric titrations at 25 °C and ionic strength of 0.5 mol·L−1 (NaCl). The heat effects of the protonation reaction of the O-phospho-l-serine were measured by direct calorimetry. NMR spectroscopy has demonstrated that the first protonation site occurs at the nitrogen atom in the amino group, followed by one of the oxygen atoms in the phosphono group, and finally the carboxyl oxygen atom. This trend is in good agreement with the enthalpy of protonation and quantum chemical calculations. These data will help to predict the speciation of O-phospho-l-serine in physiological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jastrzab, R., Lomozik, L.: Stability and coordination mode of complexes of polyphosphates and polymetaphosphates with copper(II) ions in aqueous solution—potentiometric, spectral and theoretical studies. J. Solution Chem. 39, 909–919 (2010)

    Article  CAS  Google Scholar 

  2. Cohen, P.: The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002)

    Article  CAS  Google Scholar 

  3. Rogerson, D.T., Sachdeva, A., Wang, K., Haq, T., Kazlauskaite, A., Hancock, S.M., Huguenin-Dezot, N., Muqit, M.M.K., Fry, A.M., Bayliss, R., Chin, J.W.: Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat. Chem. Biol. 11, 496–503 (2015)

    Article  CAS  Google Scholar 

  4. Kiss, E., Lakatos, A., Bányai, I., Kiss, T.: Interactions of Al(III) with phosphorylated amino acids. J. Inorg. Biochem. 69, 145–151 (1998)

    Article  CAS  Google Scholar 

  5. Hendrickson, H.S., Fullington, J.G.: Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidylserine and triphosphoinositide. Biochemistry 4, 1599–1605 (1965)

    Article  CAS  Google Scholar 

  6. Jastrzab, R., Lomozik, L.: Coordination mode in the binary systems of copper(II)/O-phospho-l-serine. J. Coord. Chem. 62, 710–720 (2009)

    Article  CAS  Google Scholar 

  7. Mohan, M.S., Abbott, E.H.: Metal complexes of amino acid phosphate esters. Inorg. Chem. 17, 2203–2207 (1978)

    Article  CAS  Google Scholar 

  8. Mohan, M.S., Abbott, E.H.: Catalytic dephosphorylation of O-phosphoserine by gyloxylate ion and copper(II). Inorg. Chem. 17, 3083–3086 (1978)

    Article  CAS  Google Scholar 

  9. Zachariou, M., Traverso, I., Spiccia, L., Hearn, M.T.W.: Potentiometric investigations into the acid–base and metal ion binding properties of immobilized metal ion affinity chromatographic (imac) adsorbents. J. Phys. Chem. 100, 12680–12690 (1996)

    Article  CAS  Google Scholar 

  10. Fölsch, G., Österberg, R.: The apparent acid ionization constants of some O-phosphorylated peptides and related compounds. J. Biol. Chem. 234, 2298–2303 (1959)

    Google Scholar 

  11. Osterberg, R.: Metal and hydrogen-ion binding properties of O-phosphoserine. Nature 179, 476–477 (1957)

    Article  CAS  Google Scholar 

  12. Homeyer, N., Horn, A.H.C., Lanig, H., Sticht, H.: Amber force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model. 12, 281–289 (2006)

    Article  CAS  Google Scholar 

  13. Gran, G.: Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77, 661–671 (1952)

    Article  CAS  Google Scholar 

  14. Rossotti, F.J.C., Rossotti, H.: Potentiometric titrations using Gran plots: a textbook omission. J. Chem. Educ. 42, 375 (1965)

    Article  CAS  Google Scholar 

  15. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. determination of equilibrium constants with the hyperquad suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  16. Li, X., Zhang, Z., Endrizzi, F., Martin, L.R., Luo, S., Rao, L.: Effect of temperature on the protonation of N-(2-hydroxyethyl)ethylenediamine-N, N′, N′-triacetic acid in aqueous solutions: potentiometric and calorimetric studies. J. Chem. Thermodyn. 85, 35–41 (2015)

    Article  CAS  Google Scholar 

  17. Liu, B., Dong, L., Yu, Q., Li, X., Wu, F., Tan, Z., Luo, S.: Thermodynamic study on the protonation reactions of glyphosate in aqueous solution: potentiometry, calorimetry and NMR spectroscopy. J. Phys. Chem. B. 120, 2132–2137 (2016)

    Article  CAS  Google Scholar 

  18. Gans, P., Sabatini, A., Vacca, A.: Simultaneous calculation of equilibrium constants and standard formation enthalpies from calorimetric data for systems with multiple equilibria in solution. J. Solution Chem. 37, 467–476 (2008)

    Article  CAS  Google Scholar 

  19. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  Google Scholar 

  20. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  Google Scholar 

  21. Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  CAS  Google Scholar 

  22. Ribeiro, R.F., Marenich, A.V., Cramer, C.J., Truhlar, D.G.: Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J. Phys. Chem. B. 115, 14556–14562 (2011)

    Article  CAS  Google Scholar 

  23. Marenich, A.V., Cramer, C.J., Truhlar, D.G.: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 113, 6378–6396 (2009)

    Article  CAS  Google Scholar 

  24. Wiberg, K.B.: Application of the Pople–Santry–Segal cndo method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24, 1083–1096 (1968)

    Article  CAS  Google Scholar 

  25. Foster, J.P., Weinhold, F.: Natural hybrid orbitals. J. Am. Chem. Soc. 102, 7211–7218 (1980)

    Article  CAS  Google Scholar 

  26. Reed, A.E., Weinstock, R.B., Weinhold, F.: Natural population analysis. J. Chem. Phys. 83, 735–746 (1985)

    Article  CAS  Google Scholar 

  27. Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1988)

    Article  CAS  Google Scholar 

  28. Moyano, A., Pericas, M.A., Valenti, E.: A theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (β-lactones). J. Org. Chem. 54, 573–582 (1989)

    Article  CAS  Google Scholar 

  29. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian, 09th edn. Gaussian Inc, Wallingford (2009)

    Google Scholar 

  30. Endrizzi, F., Melchior, A., Tolazzi, M., Rao, L.: Complexation of uranium(VI) with glutarimidoxioxime: thermodynamic and computational studies. Dalton Trans. 44, 13835–13844 (2015)

    Article  CAS  Google Scholar 

  31. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (Hyss): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)

    Article  CAS  Google Scholar 

  32. Jastrzab, R.: Studies of new phosphothreonine complexes formed in binary and ternary systems including biogenic amines and copper(II). J. Coord. Chem. 66, 98–113 (2013)

    Article  CAS  Google Scholar 

  33. Jastrzab, R.: The influence of copper(II) ions on noncovalent interactions in the systems including phosphoserine and biogenic amines. New J. Chem. 34, 2867–2875 (2010)

    Article  CAS  Google Scholar 

  34. Szpoganicz, B., Martell, A.E.: Thermodynamic and microscopic equilibrium constants of molecular species formed from pyridoxal 5′-phosphate and 2-amino-3-phosphonopropionic acid in aqueous and water-d2 solution. J. Am. Chem. Soc. 106, 5513–5521 (1984)

    Article  CAS  Google Scholar 

  35. Gardiennet-Doucet, C., Assfeld, X., Henry, B., Tekely, P.: Revealing successive steps of deprotonation of l-phosphoserine through 13C and 31P chemical shielding tensor fingerprints. J. Phys. Chem. A 110, 9137–9144 (2006)

    Article  CAS  Google Scholar 

  36. Potrzebowski, M.J., Assfeld, X., Ganicz, K., Olejniczak, S., Cartier, A., Gardiennet, C., Tekely, P.: An experimental and theoretical study of the 13C and 31P chemical shielding tensors in solid O-phosphorylated amino acids. J. Am. Chem. Soc. 125, 4223–4232 (2003)

    Article  CAS  Google Scholar 

  37. McCallum, G.H., Robertson, J.M., Sim, G.A.: Crystal structure of l-serine phosphate. Nature 184, 1863–1864 (1959)

    Article  CAS  Google Scholar 

  38. Bryndal, I., Picur, B., Lis, T.: Three polymorphic forms of dipotassium O-phospho-l-serinate hydrates. Z. Kristallog. 219, 38–46 (2004)

    CAS  Google Scholar 

  39. Sundaralingam, M., Putkey, F.F.: Molecular structures of amino acids and peptides. II. a redetermination of the crystal structure of l-O-serine phosphate. A very short phosphate-carboxyl hydrogen bond. Acta Cryst. B 26, 790–800 (1970)

    Article  CAS  Google Scholar 

  40. Putkey, E.F., Sundaralingam, M.: Molecular structures of amino acids and peptides. I. the crystal structure and conformation of DL-O-serine phosphate monohydrate. Very short phosphate–phosphate hydrogen bonds. Acta Cryst. B 26, 782–789 (1970)

    Article  CAS  Google Scholar 

  41. Maniukiewicz, W., Kwiatkowski, W., Blessing, R.H.: O-phospho-DL-threonine and O-phospho-l-threonine compared with their serine analogs. Acta Cryst. C. 52, 1736–1741 (1996)

    Article  Google Scholar 

  42. Xie, Y., Jiang, Y., Ben-Amotz, D.: Detection of amino acid and peptide phosphate protonation using Raman spectroscopy. Anal. Biochem. 343, 223–230 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant No. 41573122) and China Academy of Engineering Physics for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingliang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Tian, Y., Yu, Q. et al. Determination of Protonation Constants of O-Phospho-l-serine in Aqueous Solution: Potentiometry, Microcalorimetry, NMR Spectroscopy and Quantum Chemical Calculations. J Solution Chem 46, 2281–2292 (2017). https://doi.org/10.1007/s10953-017-0696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0696-6

Keywords

Navigation