Skip to main content
Log in

Adsorption of Ions on Zirconium Oxide Surfaces from Aqueous Solutions at High Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Surface titrations were carried out on suspensions of monoclinic ZrO2 from 25 to 290 °C slightly above saturation vapor pressure at ionic strengths of 0.03, 0.1 and 1.0 mol⋅kg−1(NaCl). A typical increase in surface charge was observed with increasing temperature. There was no correlation between the radius of the cations, Li+, Na+, K+ and (CH3)4N+, and the magnitude of their association with the surface. The combined results were treated with a 1-pKa MUSIC model, which yielded association constants for the cations (and chloride ion at low pH) at each temperature. The pH of zero-point-charge, pHzpc, decreased with increasing temperature as found for other metal oxides, reaching an apparent minimum value of 4.1 by 250 °C. Batch experiments were performed to monitor the concentration of LiOH in solutions containing suspended ZrO2 particles from 200 to 360 °C. At 350 and 360 °C, Li+ and OH ions were almost totally adsorbed when the pressure was lowered to near saturation vapor pressure. This reversible trend has implications not only to pressure-water reactor, PWR, operations, but is also of general scientific and other applied interest. Additional experiments probed the feasibility that boric acid/borate ions adsorb reversibly onto ZrO2 surfaces at near-neutral pH conditions as indicated in earlier publications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubin, J.N., Henry, C.D., Price, J.G.: The mobility of zirconium and other “immobile” elements during hydrothermal alteration. Chem. Geol. 110, 29–47 (1993)

    Article  CAS  Google Scholar 

  2. El-Mahdy, G.A., Mahmoud, S.S., El-Dahan, H.A.: Effect of halide ions on the formation and dissolution behavior of zirconium oxide. Thin Solid Films 286, 289–294 (1996)

    Article  CAS  Google Scholar 

  3. Brown, P.L., Curti, E., Grambow, B., Ekberg, C.: Chemical Thermodynamics of Zirconium. NEA Series Chemical Thermodynamics, vol. 8, p. 118. Elsevier, Amsterdam (2005)

    Google Scholar 

  4. Kido, T., Kanasugi, K., Sugano, M., Komatsu, K.: PWR Zircaloy cladding corrosion behavior: quantitative analyses. J. Nucl. Mater. 248, 281–287 (1997)

    Article  CAS  Google Scholar 

  5. Kim, Y.S., Kwon, S.C.: Crystallization and degradation of zirconium oxide in various pH solutions. J. Nuclear Mater. 270, 165–173 (1999)

    Article  CAS  Google Scholar 

  6. Cox, B.: Is zirconium oxide morphology on fuel cladding largely determined by lithium hydroxide concentration effects? J. Nucl. Mater. 249, 87–90 (1997)

    Article  CAS  Google Scholar 

  7. Cox, B., Wu, C.: Transition effects of lithium hydroxide and boric acid on Zircaloy corrosion. J. Nucl. Mater. 224, 169–178 (1995)

    Article  CAS  Google Scholar 

  8. Blumenthal, W.B.: The Chemical Behavior of Zirconium, pp. 181–198. D. Van Nostrand Co. Inc., Princeton (1958)

    Google Scholar 

  9. Aja, S.U., Wood, S.A., Williams-Jones, A.E.: The solubility of some alkali-bearing Zr minerals in hydrothermal solutions. Proc. Mat. Res. Soc. Symp. 432, 69–74 (1997)

    CAS  Google Scholar 

  10. Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A.: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61, 907–950 (1997)

    Article  CAS  Google Scholar 

  11. Aja, S.U., Wood, S.A., Williams-Jones, A.E.: The aqueous geochemistry of Zr and the solubility of some Zr-bearing minerals. Appl. Geol. 10, 603–620 (1995)

    Article  CAS  Google Scholar 

  12. Urrutia, G.A., Passaggio, S.I., Maroto, A.J.G., Blesa, M.A.: Model of the deposition of colloidal crud particles on the fuel elements of nuclear power plants. Nucl. Sci. Eng. 84, 120–130 (1983)

    CAS  Google Scholar 

  13. Regazzoni, A.E., Blesa, M.A., Maroto, A.J.G.: Interfacial properties of zirconium dioxide and magnetite in water. J. Colloid Interface Sci. 91, 560–570 (1983)

    Article  CAS  Google Scholar 

  14. Ardizzone, S., Garella, S.: Determination and congruence of surface ionization constants. Electrochim. Acta 36, 2189–2192 (1991)

    Article  CAS  Google Scholar 

  15. Ardizzone, S., Garella, S.: Oxide/solution interface: Non-simple Coulombic interactions supported by K+ ions. Mater. Chem. Phys. 31, 351–354 (1992)

    Article  CAS  Google Scholar 

  16. Ardizzone, S., Cattania, M.G., Lazzari, P., Lugo, P.: Hydrothermal “route” to pure ZrO2. Interfacial reactivity by XPS and electrochemical determinations. Colloids Surf. A 90, 45–54 (1994)

    Article  CAS  Google Scholar 

  17. Brown, D.J., Flynn, G., Haynes, J.W., Kitt, G.P., Large, N.R., Lawson, D., Mead, A.P., Nichols, J.L., Woodwark, D.R.: Effect of coolant chemistry on PWR radiation. NP-4583, Palo Alto, CA: EPRI, May, 1986

  18. Byers, W.A., Lindsay, W.T., Jr., Kunig, R.H.: Solubility of lithium monoborate in high temperature water. J. Solution Chem. 29, 541–559 (2000)

    Article  CAS  Google Scholar 

  19. Bondars, B., Heidemane, G., Grabis, J., Laschke, K., Boysen, H., Schneider, J., Frey, F.: Powder diffraction investigations of plasma-sprayed zirconia. J. Mater. Sci. 30, 1621–1625 (1995)

    Article  CAS  Google Scholar 

  20. Palmer, D.A., Bénézeth, P., Wesolowski, D.J.: Aqueous high temperature solubility studies. 1. The solubility of boehmite as a function of ionic strength (to 5 molal, NaCl), temperature (100–250 °C), and pH as determined by in situ measurements. Geochim. Cosmochim. Acta 13, 2081–2095 (2001)

    Article  Google Scholar 

  21. Baes, C.F., Mesmer, R.E.: The Hydrolysis of Cations. Wiley, New York (1976)

    Google Scholar 

  22. Busey, R.H., Mesmer, R.E.: Thermodynamic quantities for the ionization of water in sodium chloride media to 300 °C. J. Chem. Eng. Data 23, 175–176 (1978)

    Article  CAS  Google Scholar 

  23. Machesky, M.L., Wesolowski, D.J., Palmer, D.A.: Potentiometric titrations of rutile suspensions to 250 °C. J. Colloid Interface Sci. 200, 298–309 (1998)

    Article  CAS  Google Scholar 

  24. Lyklema, J.: Points of zero charge in the presence of specific adsorption. J. Colloid Interface Sci. 99, 109–117 (1984)

    Article  CAS  Google Scholar 

  25. Bolt, G.H., van Riemsdijk, W.H.: Ion adsorption on variable charge constituents. In: Bolt, G.H. (ed.) Soil Chem. Part B: Physico-Chemical Models, pp. 459–504. Elsevier, Amsterdam (1986)

    Google Scholar 

  26. Gibb, A.W., Koopal, L.K.: Electrochemistry of a model for patchwise heterogeneous surfaces: The rutile-hematite system. J. Colloid Interface Sci. 134, 122–138 (1990)

    Article  CAS  Google Scholar 

  27. Bousse, L., De Rooij, N.F., Bergveld, P.: The influence of counterion adsorption on the ψ o/pH characteristics of insulator surfaces. Surf. Sci. 135, 479–496 (1983)

    Article  CAS  Google Scholar 

  28. Kosmulski, M.: Chemical Properties of Material Surfaces. Surfactant Science Series, vol. 102. Marcel Dekker, New York (2001)

    Google Scholar 

  29. Hiemstra, T., Venema, P., Van Riemsdijk, W.H.: Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: The bond valence principle. J. Colloid Interface Sci. 184, 680–692 (1996)

    Article  CAS  Google Scholar 

  30. Brown, G.E., Jr., Henrich, V.E., Casey, W.H., Clark, D.L., Eggleston, C., Felmy, A., Goodman, D.W., Grätzel, M., Maciel, G., McCarthy, M.I., Nealson, K.H., Sverjensky, D.A., Toney, M.F., Zachara, J.M.: Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99, 177–174 (1999)

    Article  Google Scholar 

  31. Sposito, G.: On points of zero charge. Environ. Sci. Technol. 32, 2815–2819 (1998)

    Article  CAS  Google Scholar 

  32. Busey, R.H., Mesmer, R.E.: Thermodynamic quantities for the ionization of water in sodium chloride media to 300 °C. J. Chem. Eng. Data 23, 175–176 (1978)

    Article  CAS  Google Scholar 

  33. Archer, D.G.: Thermodynamic properties of the NaCl + H2O system. II. Thermodynamic properties of NaCl(aq), NaCl.2H2O(cr), and phase equilibria. J. Phys. Ref. Data 21, 793–829 (1992)

    Article  CAS  Google Scholar 

  34. Kosmulski, M.: Attempt to determine pristine points of zero charge of Nb2O5, Ta2O5, and HfO2. Langmuir 13, 6315–6320 (1997)

    Article  CAS  Google Scholar 

  35. Ardizzone, S., Bianchi, C.L.: Electro-chemical features of zirconia polymorphs. The interplay between structure and surface OH species. J. Electroanal. Chem. 465, 136–141 (1999)

    Article  CAS  Google Scholar 

  36. Jayaweera, P., Hettiarachchi, S., Ocken, H.: Determination of the high temperature zeta potential and pH of zero charge of some transition metal oxides. Colloids Surf. A. 85, 19–27 (1994)

    Article  CAS  Google Scholar 

  37. Stumm, W.: Chemistry of the Solid-Water Interface. Wiley, New York (1992)

    Google Scholar 

  38. Machesky, M.L., Wesolowski, D.J., Palmer, D.A., Ridley, M.K.: On the temperature dependence of intrinsic surface protonation constants: An extension of the revised MUSIC model. J. Colloid Interface Sci. 239, 314–327 (2001)

    Article  CAS  Google Scholar 

  39. Wesolowski, D.J., Machesky, M.L., Palmer, D.A., Anovitz, L.M.: Magnetite surface charge studies to 290 °C from in situ pH titrations. Chem. Geol. 167, 193–229 (2000)

    Article  CAS  Google Scholar 

  40. Blesa, M.L., Maroto, A.J.G., Regazzoni, A.E.: Boric acid adsorption on magnetite and zirconium dioxide. J. Colloid Interface Sci. 99, 32–40 (1984)

    Article  CAS  Google Scholar 

  41. Palmer, D.A., Bénézeth, P., Wesolowski, D.J.: Boric acid hydrolysis: A new look at the available data. PowerPlant Chem. 2, 261–264 (2000)

    CAS  Google Scholar 

  42. Bénézeth, P., Wesolowski, D.J., Palmer, D.A., Machesky, M.L.: Effect of amines on the surface charge properties of iron oxides. J. Solution Chem. (2009, this issue). doi:10.1007/s10953-009-9419-y

    Google Scholar 

  43. Ho, P., Palmer, D.A., Wood, R.H.: Conductivity measurements of dilute aqueous LiOH, NaOH, and KOH solutions to high temperatures and pressures using a flow-through cell. J. Phys. Chem. B 104, 12084–12089 (2000)

    Article  CAS  Google Scholar 

  44. Chialvo, A.A., Cummings, P.T., Predota, M., Wesolowski, D.J.: Structure of the electric double layer in hydrothermal systems. Molecular simulation and interpretation of experimental results. Annual AIChE Meeting, Symposium of Molecular Simulation and Theory of Adsorption Phenomena II, Nr. 138f, Reno (Nevada), Nov. 4–9 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Palmer.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, D.A., Machesky, M.L., Bénézeth, P. et al. Adsorption of Ions on Zirconium Oxide Surfaces from Aqueous Solutions at High Temperatures. J Solution Chem 38, 907–924 (2009). https://doi.org/10.1007/s10953-009-9415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9415-2

Keywords

Navigation