Skip to main content
Log in

Thermodynamic Studies as Predictive Tools of the Behavior of Electroceramics Under Different Hydrothermal Environments

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic simulations are performed in all areas of materials processing because of the advances that have taken place in computer software for complex non-ideal calculations, together with the increasing availability of evaluated data for different phases. In the present work, a thermodynamic model of electrolytic solutions was applied to determine the reaction conditions favoring the hydrothermal synthesis of the following electroceramics: zinc ferrites, sodium niobates, and lead zirconates. Stability and yield diagrams were constructed relating the equilibrium concentration of all of the aqueous and solid species as functions of temperature, pressure, pH, and input reagent concentrations. The theoretical predictions avoided the empirical trial-and-error method of synthesis and were corroborated by experiments. The results demonstrate the important role that such thermodynamic simulations can play in significantly reducing the time and costs associated with hydrothermal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Férey, G., Jacobson, A.J.: Synthesis and reactivity of solids from “mild” to “severe” chemistry for “smart” materials. Curr. Op. Sol. State Mater. Sci. 4, 109–111 (1999)

    Article  Google Scholar 

  2. Gopalakrishnan, J.: Chimie douce approaches to the synthesis of metastable oxide ceramics. Chem. Mater. 7, 1265–1275 (1995)

    Article  CAS  Google Scholar 

  3. Matsumoto, Y.: Soft solution processing for high performance inorganic materials—Introduction. J. Mater. Res. 13, 795 (1998)

    Article  CAS  Google Scholar 

  4. Yu, S.H.: Hydrothermal/solvothermal processing of advanced ceramic materials. J. Ceram. Soc. Japan 109, S65–S75 (2001)

    CAS  Google Scholar 

  5. Dias, A., Matinaga, F.M., Moreira, R.L.: Raman spectroscopy of (Ba1- x Sr x )(Mg1/3Nb2/3)O 3 solid solutions from microwave-hydrothermal powders. Chem. Mater. 19, 2335–2341 (2007)

    Article  CAS  Google Scholar 

  6. Riman, R.E., Suchanek, W.L., Lencka, M.M.: Hydrothermal crystallization of ceramics. Ann. Chim.-Sci. Mater. 27, 15–36 (2002)

    Article  CAS  Google Scholar 

  7. Anderko, A., Sanders, S.J., Young, R.D.: Real-solution stability diagrams: a thermodynamic tool for modeling corrosion in wide temperature and concentration ranges. Corrosion 53, 43–53 (1997)

    Article  CAS  Google Scholar 

  8. Zemaitis, J.F. Jr., Clarck, D.M., Rafal, M., Scrivner, N.C.: Handbook of Aqueous Electrolyte Thermodynamics: Theory and Applications. DIPPR/AIChE, New York (1986)

    Google Scholar 

  9. Rafal, M., Berthold, J.W., Scrivner, N.C.: Models for electrolyte solutions. In: Sandler, S.I. (ed.) Models for Thermodynamic and Phase Equilibria Calculations. Marcel Dekker, New York (1995)

    Google Scholar 

  10. Oelkers, E.H., Helgeson, H.C.: Multiple ion association in supercritical aqueous-solutions of single electrolytes. Science 261, 888–891 (1993)

    Article  CAS  Google Scholar 

  11. Harvie, C.E., Moller, N., Weare, J.H.: The prediction of mineral solubilities in natural-waters—the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 degrees C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  CAS  Google Scholar 

  12. Gurvich, L.V., Veyts, I.V., Alcock, C.B.: Thermodynamic Properties of Individual Substances, 4th edn., vol. 1–2. Hemisphere Publishing Corporation, New York (1989/1990)

    Google Scholar 

  13. Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52, 2009–2036 (1988)

    Article  CAS  Google Scholar 

  14. Sverjensky, D.A.: Calculations of the thermodynamic properties of aqueous species and the solubilities of minerals in supercritical electrolyte solutions. In: Carmichael, I.S.E., Eugster, H.P. (eds.) Reviews in Mineralogy. Thermodynamic Modeling of Geologic Materials: Minerals, Fluids and Melts, vol. 17, pp. 177–209. Mineralogical Society of America, Chelsea (1987)

    Google Scholar 

  15. Dauber, T.E., Danner, R.P.: Physical and Thermodynamic Properties of Pure Chemicals. Data Compilation, DIPPR Database 801, Parts 1–4. Hemisphere Publishing Corporation, New York (1989) (Jan. 1990 Release)

    Google Scholar 

  16. Barin, I.: Thermochemical Data of Pure Substances, Parts I and II. VCH, Weinheim (1989)

    Google Scholar 

  17. Ciminelli, V.S.T., Dias, A.: Theoretical predictions and experimental results of the hydrothermal processing of strontium tungstates. Ferroelectrics 241, 1915–1922 (2000)

    Article  CAS  Google Scholar 

  18. Dias, A., Ciminelli, V.S.T.: Thermodynamic calculations and modeling of the hydrothermal synthesis of nickel tungstates. J. Eur. Ceram. Soc. 21, 2061–2065 (2001)

    Article  CAS  Google Scholar 

  19. Dias, A., Buono, V.T.L.: Hydrothermal synthesis and sintering of nickel and manganese-zinc ferrites. J. Mater. Res. 12, 3278–3285 (1997)

    Article  CAS  Google Scholar 

  20. Dias, A., Mohallem, N.D.S., Moreira, R.L.: Solid-state sintering of hydrothermal powders: Densification and grain growth kinetics of nickel–zinc ferrites. Mater. Res. Bull. 33, 475–486 (1998)

    Article  CAS  Google Scholar 

  21. Dias, A., Mohallem, N.D.S., Moreira, R.L.: Dielectric properties of hydrothermal nickel–zinc ferrites. J. Physique III 6, 843–852 (1996)

    CAS  Google Scholar 

  22. Teixeira, N.G., Dias, A., Moreira, R.L.: Raman scattering study of the high temperature phase transitions of NaTaO3. J. Eur. Ceram. Soc. 27, 3683–3686 (2007)

    Article  CAS  Google Scholar 

  23. Randolph, A.D., Larson, M.A.: Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization. Academic Press, San Diego (1988)

    Google Scholar 

  24. Lencka, M.M., Riman, R.E.: Synthesis of lead titanate—Thermodynamic modeling and experimental verification. J. Am. Ceram. Soc. 76, 2649–2659 (1993)

    Article  CAS  Google Scholar 

  25. Gersten, B., Lencka, M.M., Riman, R.E.: Engineered low temperature hydrothermal synthesis of phase-pure lead-based perovskites using ethylenediamine tetra-acetic acid complexation. Chem. Mater. 14, 1950–1960 (2002)

    Article  CAS  Google Scholar 

  26. Cho, S.B., Noh, J.S., Lencka, M.M., Riman, R.E.: Low temperature hydrothermal synthesis and formation mechanisms of lead titanate (PbTiO3) particles using tetramethylammonium hydroxide: thermodynamic modelling and experimental verification. J. Eur. Ceram. Soc. 23, 2323–2335 (2003)

    Article  CAS  Google Scholar 

  27. Pauley, J.L., Testerman, M.K.: Basic salts of lead nitrate formed under aqueous media. J. Am. Chem. Soc. 76, 4220–4222 (1954)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Dias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, A. Thermodynamic Studies as Predictive Tools of the Behavior of Electroceramics Under Different Hydrothermal Environments. J Solution Chem 38, 843–856 (2009). https://doi.org/10.1007/s10953-009-9413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9413-4

Keywords

Navigation