Skip to main content
Log in

A Thermodynamic Study on the Binding of PEG-Stearic Acid Copolymer with Lysozyme

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamics of the interaction between a copolymer of polyethyleneglycol400-stearic acid, S400, and lysozyme was investigated at pH=7.0 and 27 °C in phosphate buffer by isothermal titration calorimetry, ITC. The extended solvation model was used to reproduce the enthalpies of the S400 + lysozyme interactions. The solvation parameters recovered from the extended solvation model are attributed to the structural change of lysozyme and its biological activity. The binding parameters found for the interaction of S400 with lysozyme indicate that at low concentrations of S400, the lysozyme structure was destabilized but at higher concentrations of S400 lysozyme it was stabilized by S400. It is suggested that S400 interacts with a set of three identical binding sites on lysozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pico, G., Bassani, G., Farruggia, B., Nerli, B.: Calorimetric investigation of the protein-flexible chain polymer interactions and its relationship with protein partition in aqueous two-phase systems. Int. J. Biol. Macro. 40, 268–275 (2007)

    Article  CAS  Google Scholar 

  2. Malzert-Freon, A., Abillon, O., Proust, J.E., Gref, R., Benoıt, J.P., Boury, F.: Interactions between hen egg-white lysozyme, PEG2,000, and PLA50 at the air-water interface. J. Coll. Surf. B: Biointerfaces 42, 97–106 (2005)

    Article  CAS  Google Scholar 

  3. Taluja, A., Bae, Y.H.: Role of a novel multifunctional excipient poly(ethylene glycol)-block-oligo(vinyl sulfadimethoxine) in controlled release of lysozyme from PLGA microspheres. Int. J. Pharm. 358, 50–59 (2008)

    Article  CAS  Google Scholar 

  4. Zhu, J., Li, D., Jin, J., Wu, L.: Binding analysis of farrerol to lysozyme by spectroscopic methods. Spectrochim. Acta Part A 68, 354–359 (2007)

    Article  CAS  Google Scholar 

  5. Baht, R., Timasheff, S.N.: Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Sci. 1, 1133–1143 (1992)

    Article  Google Scholar 

  6. Lee, J.C., Lee, L.L.: Preferential solvent interactions between proteins and polyethylene glycols. J. Biol. Chem. 256, 625–631 (1981)

    CAS  Google Scholar 

  7. Vergara, A., Paduano, L., Sartorio, R.: Mechanism of protein–poly(ethylene glycol) interaction from a diffusive point of view. Macromol. 35, 1389–1398 (2002)

    Article  CAS  Google Scholar 

  8. Haire, R.N., Tisel, W.A., White, J.G.: On the precipitation of proteins by polymers: the hemoglobin–polyethylene glycol system. Biopolymers 23, 2761–2779 (1984)

    Article  CAS  Google Scholar 

  9. Lotwin, J., De Bernardez Clark, E.: Oxidative renaturation of hen egg-white lysozyme in polyethylene glycol-salt aqueous two-phase systems. Biotechnol. Bioeng. 65, 437–466 (1999)

    Article  CAS  Google Scholar 

  10. Malzert, A., Boury, F., Renard, D., Robert, P., Lavenant, J., Benoit, L.P., Proust, J.E.: Spectroscopic studies on poly(ethylene glycol)–lysozyme interactions. Int. J. Pharm. 260, 175–186 (2003)

    Article  CAS  Google Scholar 

  11. Nerli, B.B., Espariz, M., Pico, G.A.: Thermodynamic study of forces involved in bovine serum albumin and ovalbumin partitioning in aqueous two-phase systems. Biotechnol. Bioeng. 72, 468–474 (2001)

    Article  CAS  Google Scholar 

  12. Demel, R.A., London, Y.: The specific interaction of myelin basic protein with lipids at the air-water interface. Biochem. Biophys. Acta 311, 507–519 (1973)

    Article  CAS  Google Scholar 

  13. Reynolds, J.A., Stone, W.L., Tanford, C.: Interaction of L-alpha-didecanoyl phosphatidylcholine with the AI polypeptide of high density lipoprotein. Proc. Natl. Acad. Sci. USA 74, 3796–3799 (1977)

    Article  CAS  Google Scholar 

  14. Junbai, L., Chena, H., Wua, J., Zhaoa, J., Miller, R.: The structure and dynamic properties of mixed adsorption and penetration layers of α-dipalmitoylphosphatidylcholine/β-lactoglobulin at water/fluid interfaces. Colloids Surf. B: Biointerfaces 15, 289–295 (1999)

    Article  Google Scholar 

  15. Taneva, S.G., Keough, K.M.: Adsorption of pulmonary surfactant protein SP-A to monolayers of phospholipids containing hydrophobic surfactant protein SP-B or SP-C: Potential differential role for tertiary interaction of lipids, hydrophobic proteins, and SP-A. Biochem. 39, 6083–6093 (2000)

    Article  CAS  Google Scholar 

  16. Goodman, D.S.: The interaction of human serum in albumin with long-chain fatty acid anions. J. Am. Chem. Soc. 80, 3892–3898 (1958)

    Article  CAS  Google Scholar 

  17. Spector, A.A.: Fatty acid binding to plasma albumin. J. Lipid Res. 16, 165–179 (1975)

    CAS  Google Scholar 

  18. Ashbrook, J.D., Spector, A.A., Santos, E.C., Fletcher, J.E.: Long chain fatty acid binding to human plasma albumin. J. Biol. Chem. 250, 2333–2338 (1975)

    CAS  Google Scholar 

  19. Rehfeld, S.J., Eatough, D.J., Plachy, W.Z.: The binding isotherms for the interaction of 5-doxyl stearic acid with bovine and human albumin. J. Lipid Res. 19, 841–849 (1978)

    CAS  Google Scholar 

  20. Yoo, H.S., Choi, H.K., Park, T.G.: Protein-fatty acid complex for enhanced loading and stability within biodegradable nanoparticles. J. Pharm. Sci. 90, 194–201 (2001)

    Article  CAS  Google Scholar 

  21. Mitra, A., Chattoraj, D.K., Chakraborty, P.: Thermodynamics of the interaction of globular proteins with powdered stearic acid in acid pH. Biomacromol. 7, 2038–2043 (2006)

    Article  CAS  Google Scholar 

  22. Schmaljohann, D.: Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58, 1655–1670 (2006)

    Article  CAS  Google Scholar 

  23. Kim, Y.H., Bae, Y.H., Kim, S.W.: pH/Temperature-sensitive polymers for macromolecular drug loading and release. J. Control. Release 28, 143–152 (1994)

    Article  CAS  Google Scholar 

  24. Graham, B., Spiccia, L., Hearn, M.T.W.: Examination of the binding behaviour of several proteins with the immobilized copper(II) complexes of o-, m-, and p-xylylene bridged bis(1,4,7-triazacyclononane) macrocycles. J. Chromatography A 1194, 30–37 (2008)

    Article  CAS  Google Scholar 

  25. Lia, D., Jia, B., Jin, J.: Spectrophotometric studies on the binding of vitamin C to lysozyme and bovine liver catalase. J. Lumin. 128, 1399–1406 (2008)

    Article  CAS  Google Scholar 

  26. Hoq, M.I., Mitsuno, K., Tsujino, Y., Aoki, T., Ibrahim, H.R.: Triclosan-lysozyme complex as novel antimicrobial macromolecule: a new potential of lysozyme as phenolic drug-targeting molecule. Int. J. Biol. Macro. 42, 468–477 (2008)

    Article  CAS  Google Scholar 

  27. Canfield, R.E.J.: The amino acid sequence of egg white lysozyme. Biol. Chem. 238, 2698–2707 (1963)

    CAS  Google Scholar 

  28. Blake, C.C.F., Koenig, D.F., Mair, G.A., North, A.C.T., Phillips, D.C., Sarma, V.R.: Structure of hen-egg white lysozyme: A three-dimensional Fourier synthesis at 2.0 Å resolution. Nature 206, 757–761 (1965)

    Article  CAS  Google Scholar 

  29. Takahashi, K., Lou, X.F., Ishii, Y., Hattori, M.: Lysozyme-glucose stearic acid monoester conjugate formed through the Maillard reaction as an antibacterial emulsifier. J. Agric. Food Chem. 48, 2044–2049 (2000)

    Article  CAS  Google Scholar 

  30. Ibrahim, H.R., Inazaki, D., Abdou, A., Aoki, T., Kim, M.: Processing of lysozyme at distinct loops by pepsin: A novel action for generating multiple antimicrobial peptide motifs in the newborn stomach. Biochim. Biophys. Acta 1726, 102–114 (2005)

    CAS  Google Scholar 

  31. Croguennec, T., Nau, F., Molle, D., Gract, Y.L., Brule, G.: Iron and citrate interactions with hen egg white lysozyme. Food Chem. 68, 29–35 (2000)

    Article  CAS  Google Scholar 

  32. Gorbenko, G.P., Ioffe, V.M., Kinnunen, P.K.: Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association. Biophys. 93, 140–153 (2007)

    Article  CAS  Google Scholar 

  33. Parrot, J.L., Nicot, G.: Antihistaminic action of lysozyme. Nature 197, 496–499 (1963)

    Article  CAS  Google Scholar 

  34. Sava, G., Ceschia, V., Pacor, S., Zabucchi, G.: Observations on the antimetastatic action of lysozyme in mice bearing Lewis lung carcinoma. Anticancer Res. 11, 1109–1113 (1991)

    CAS  Google Scholar 

  35. Ibrahim, H.R., Kato, A., Kobayashi, K.: Antimicrobial effects of lysozyme against gram-negative bacteria due to covalent binding of palmitic acid. J. Agric. Food. Chem. 39, 2077–2082 (1991)

    Article  CAS  Google Scholar 

  36. Ghosh, K.S., Sahoo, B.K., Dasgupta, S.: Spectrophotometric studies on the interaction between (−)-epigallocatechin gallate and lysozyme. Chem. Phys. Lett. 452, 193–197 (2008)

    Article  CAS  Google Scholar 

  37. Lad, M.D., Birembaut, F., Frazier, R.A., Green, R.J.: Protein–lipid interactions at the air/water interface. Phys. Chem. 7, 3478–3485 (2005)

    Article  CAS  Google Scholar 

  38. Pongjanyakul, T., Medlicott, N.J., Tucker, I.G.: Melted glyceryl palmitostearate (GPS) pellets for protein delivery. Int. J. Pharm. 271, 53–62 (2004)

    Article  CAS  Google Scholar 

  39. Rezaei Behbehani, G.: Application of a new method to reproduce the enthalpies of transfer of NaI from water to aqueous methanol, ethanol and iPrOH solvent systems at 289.15 K. Bull. Korean Chem. Soc. 2, 238–240 (2005)

    Google Scholar 

  40. Rezaei Behbehani, G.: Application of the new solvation theory to reproduce the enthalpies of transfer of LiBr, tetrabuthylammonium bromide and tetrapenthylamonium bromide from water to aqueous acetonitrile at 298 K. Acta Chim. Slov. 52, 282–285 (2005)

    Google Scholar 

  41. Rezaei Behbehani, G., Tazikeh, E., Saboury, A.A.: Using the new developed equation to reproduce the enthalpies of transfer of urea from water to aqueous ethanol, propan-1-ol and acetonitrile at 298 K. Bull. Korean Chem. Soc. 21, 208–210 (2006)

    Google Scholar 

  42. Rezaei Behbehani, G., Ghamamy, S.: Enthalpies of transfer of formamide, N-methylformamide and N,N-dimethylformamide from water to aqueous acetonirile mixtures at 298 K. Thermochim. Acta 444, 71–76 (2006)

    Article  CAS  Google Scholar 

  43. Rezaei Behbehani, G., Ghamamy, S., Waghorne, W.E.: Enthalpies of transfer of acetonitrile from water to aqueous methanol, ethanol and dimethylsulphoxide mixtures at 298.15 K. Thermochim. Acta 448, 37–42 (2006)

    Article  CAS  Google Scholar 

  44. Rezaei Behbehani, G., Tazikeh, E., Saboury, A.A.: Using the Extension Coordination Model (ECM) to reproduce the enthalpies of transfer of tetraethylurea from water to aqueous ethanol, propan-1-ol and acetonitrile at 298 K. Acta Chim. Slov. 53, 363–369 (2006)

    Google Scholar 

  45. Rezaei Behbehani, G., Saboury, A.A.: Using a new solvation model for thermodynamic study on the interaction of nickel with human growth hormone. Thermochim. Acta 452, 76–79 (2007)

    Article  CAS  Google Scholar 

  46. Rezaei Behbehani, G., Saboury, A.A., Fallah Baghery, A.: A thermodynamic study on the binding of calcium ion with Myelin basic protein. J. Solution Chem. 36, 1311–1320 (2007)

    Article  CAS  Google Scholar 

  47. Rezaei Behbehani, G., Saboury, A.A., Taleshi, E.: A comparative study of the direct calorimetric determination of the denaturation enthalpy for lysozyme in sodium dodecyl sulfate and dodecyltrimethylammonium bromide solutions. J. Solution Chem. 37, 619–629 (2008)

    Article  CAS  Google Scholar 

  48. Rezaei Behbehani, G., Saboury, A.A.: A thermodynamic study on the binding of magnesium with human growth hormone, consideration of the new extended coordination model solvation parameters. J. Therm. Anal. Cal. 89, 859–863 (2007)

    Article  CAS  Google Scholar 

  49. Rezaei Behbehani, G., Saboury, A.A., Takeshi, E.: Determination of partial unfolding enthalpy for lysozyme upon interaction with dodecyltrimethylammonium bromide using an extended solvation model. J. Mol. Recognit. 21, 132–135 (2008)

    Article  CAS  Google Scholar 

  50. Rezaei Behbehani, G., Saboury, A.A.: A direct calorimetric determination of denaturation enthalpy for lysozyme in sodiumdodecylsulfate. J. Colloid Surf. B: Biointerfaces 61, 224–228 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rezaei Behbehani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaei Behbehani, G., Divsalar, A., Saboury, A.A. et al. A Thermodynamic Study on the Binding of PEG-Stearic Acid Copolymer with Lysozyme. J Solution Chem 38, 219–229 (2009). https://doi.org/10.1007/s10953-008-9360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9360-5

Keywords

Navigation