Skip to main content
Log in

Effect of Ionic Strength and Temperature on the Protonation of Oxidized Glutathione

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The protonation constants for oxidized glutathione, H i−1L(4−i+1)−, K H i =[H i L(4−i)−]/[H i−1L(4−i+1)−][H+] i=1,2,…,6 have been measured at 5, 25 and 45 °C as a function of the ionic strength (0.1 to 5.4 mol⋅[kg(H2O)]−1) in NaCl solutions. The effect of ionic strength on the measured protonation constants has been used to determine the thermodynamic values (K H0 i ) and the enthalpy (ΔH i ) for the dissociation reaction using the SIT model and Pitzer equations. The SIT (ε) and Pitzer parameters (β (0), β (1) and C) for the dissociation products (L4−, HL3−, H2L2−, H3L, H4L, H5L+, H6L2+) have been determined as a function of temperature. These results can be used to examine the effect of ionic strength and temperature on glutathione in aqueous solutions with NaCl as the major component (body fluids, seawater and brines).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saez, G.T., Bannister, W.H., Bannister, J.V.: In: Vina, J. (ed.) Glutathione: Metabolism and Physiological Functions, p. 237. CRC Press, Boca Raton (1990)

    Google Scholar 

  2. Sies, H., Brigelius, R., Akerboom, T.P.M.: In: Larsson, A., Orrenius, S., Holmgren, A., Mannervik, B. (eds.) Function of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects, p. 51. Raven Press, New York (1983)

    Google Scholar 

  3. Novak, M., Lin, J.: Reactions of glutathione with carcinogenic esters of N-arylhydroxamic acids. J. Am. Chem. Soc. 118, 1302–1306 (1996)

    Article  CAS  Google Scholar 

  4. Santala, T., Fishbein, J.C.: Thiolytic decomposition of the carcinogen N-methyl-N′-nitro-N-nitrosoguanidine. A change in rate-limiting step with nucleophile basicity controls alkylating activity. J. Am. Chem. Soc. 114, 8852–8857 (1992)

    Article  CAS  Google Scholar 

  5. Ercal, N., Gurer-Othan, H., Aykin-Burns, N.: Toxic metals and oxidative stress. Part I: mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem. 1, 529–539 (2001)

    Article  CAS  Google Scholar 

  6. Cavus, L., Tarhan, L.: Glutathione redox system, GSH-Px activity and lipid peroxidation (LPO) levels in tadpoles of R. r. ridibunda and B. viridis. Cell. Biochem. Funct. 21, 75–79 (2003)

    Article  Google Scholar 

  7. Cheesman, B.V., Arnold, A.P., Rabenstein, D.L.: Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 25. Hg(thiol)3 complexes and HG(II)-thiol ligand exchange kinetics. J. Am. Chem. Soc. 110, 6359–6364 (1988)

    Article  CAS  Google Scholar 

  8. Grill, E., Winnacker, M.H.Z., Zenk, M.: Phytochelatins: the principal heavy metal complexing peptides of higher plants. Science 230, 674–676 (1985)

    Article  CAS  Google Scholar 

  9. Rozan, H., Lassman, M.E., Ridge, D.P., Luther III, G.W.: Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature 406(6798), 879–882 (2000)

    Article  CAS  Google Scholar 

  10. Laglera, L.M., Van den Berg, C.M.G.: Copper complexation by thiol compounds in esturaine waters. Mar. Chem. 101, 130–140 (2006)

    Article  CAS  Google Scholar 

  11. Hsu, H., Sedlak, D.L.: Strong Hg(II) complexation in municipal wastewater effluent and surface waters. Environ. Sci. Technol. 37, 2743–2749 (2003)

    Article  CAS  Google Scholar 

  12. Pettit, L.D., Powell, H.K.J.: Stability Constants Database. IUPAC, Version 2.68. Academic Software, Otley (1997)

    Google Scholar 

  13. Armas, M.T., Mederos, A., Gili, P., Dominguez, S., Hernandez-Molina, R., Lorenzo, P., Baran, E.J., Araujo, M.L., Brito, F.: Speciation in the oxovanadium(IV)/glutathione system. Polyhedron 20, 799–804 (2001)

    Article  CAS  Google Scholar 

  14. Kozlowski, H., Varnangy, K., Sovago, I.: Cadmium ion interaction with sulphur containing amino acid and peptide ligands. Polyhedron 9, 831–837 (1990)

    Article  CAS  Google Scholar 

  15. Crea, P., De Stefano, C., De Robertis, A., Milea, D., Sammartano, S.: Modeling the dependence on medium and ionic strength of glutathione acid-base behavior in LiClaq, NaClaq, KClaq, RbClaq, CsClaq, (CH3)4NClaq, and (C2H5)4NIaq. J. Chem. Eng. Data 52, 1028–1036 (2007)

    Article  CAS  Google Scholar 

  16. Piu, P., Sanna, G., Zoroddu, M., Seeber, R., Basosi, R., Pogni, R.: Potentiometric and spectroscopic study of ternary complexes of copper(II), I,l-o-phenanthroline and oxidised glutathione. J. Chem. Soc. Dalton Trans. 1267–1271 (1995)

  17. Suzuki, H., Ishiguro, S., Ohtaki, H.: Formation of chloro complexes of manganese(II), cobalt(II), nickel(II) and zinc(II) in dimethyl sulphoxide. J. Chem. Soc. Faraday Trans. 86, 2179–2185 (1990)

    Article  CAS  Google Scholar 

  18. Noszal, B., Szakacs, Z.: Microscopic protonation equilibria of oxidized glutathione. J. Phys. Chem. B 107, 5074–5080 (2003)

    Article  CAS  Google Scholar 

  19. Vanargy, K., Sóvágó, I., Kozlowski, H.: Transition metal complexes of amino acids and derivatives containing disulphide bridges. Inorg. Chim. Acta 151, 117–123 (1988)

    Article  Google Scholar 

  20. Kozowski, H., Urbaska, J., Sóvágó, I., Varnagy, K., Kiss, A., Spychaa, J., Cherifi, K.: Cadmium ion interaction with sulphur containing amino acid and peptide ligands. Polyhedron 9, 831–837 (1990)

    Article  Google Scholar 

  21. Shtyrlin, V.G., Zyavkina, Y.I., Ilakin, V.S., Garipov, R.R., Zakharov, A.V.: Structure, stability, and ligand exchange of copper(II) complexes with oxidized glutathione. J. Inorg. Biochem. 99, 1335–1346 (2005)

    Article  CAS  Google Scholar 

  22. Ciavatta, L.: The specific interaction theory in the evaluating ionic equilibria. Ann. Chim. (Rome) 70, 551–562 (1980)

    CAS  Google Scholar 

  23. Grenthe, I., Plyasunov, A.V., Spahiu, K.: Chap. IX: Estimation of medium effects on thermodynamic data. In: Grenthe, I., Puigdomenech, I. (eds.) Modeling in Aquatic Chemistry, pp. 325–426. OECD Nuclear Energy Agency, Issy-les-Moulineaux (1997)

    Google Scholar 

  24. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  25. De Stefano, C., Princi, P., Rigano, C., Sammartano, C.: Computer analysis of equilibrium data in solution. ESAB2M: an improved version of the ESAB program. Ann. Chim. (Rome) 77, 643–675 (1987)

    Google Scholar 

  26. De Stefano, C., Foti, C., Giuffrè, O., Mineo, P., Rigano, C., Sammartano, S.: Binding of tripolyphosphate by aliphatic amines: formation, stability and calculation problems. Ann. Chim. (Rome) 86, 257–280 (1996)

    Google Scholar 

  27. Setschenow, J.Z.: Uber die Konstitution der Salzlosungenauf Grund ihres Verhaltens zu Kohlensaure. Phys. Chem. 4, 117–125 (1899)

    Google Scholar 

  28. Bretti, C., Foti, C., Sammartano, S.: A new approach in the use of SIT in determining the dependence on ionic strength of activity coefficients. Application to some chloride salts of interest in the speciation of natural fluids. Chem. Spec. Bioavail. 16, 105–110 (2004)

    Article  CAS  Google Scholar 

  29. Bretti, C., Foti, C., Porcino, N., Sammartano, S.: SIT parameters for 1:1 electrolytes and correlation with Pitzer coefficients. J. Solut. Chem. 35, 1401–1415 (2006)

    Article  CAS  Google Scholar 

  30. Crea, F., Foti, C., De Stefano, C., Sammartano, S.: SIT parameters for 1:2 electrolytes and correlation with Pitzer coefficients. Ann. Chim. (Rome) 85–95 (2007)

  31. Clarke, E.C.W., Glew, D.N.: Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc. 134, 539–547 (1966)

    Article  Google Scholar 

  32. Pitzer, K.S.: Theory: ion interaction approach: theory and data collection. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., pp. 75–153. CRC Press, Boca Raton (1991)

    Google Scholar 

  33. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes, II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  34. Millero, F.J., Pierrot, D.: A chemical equilibrium model for natural waters. Aquatic Geochem. 4, 153–199 (1998)

    Article  CAS  Google Scholar 

  35. Sharma, V.K., Zinger, A., Millero, F.J., De Stefano, C.: Dissociation constants of protonated methionine species in NaCl media. Biophys. Chem. 105, 79–87 (2003)

    Article  CAS  Google Scholar 

  36. Møller, N.: The prediction of mineral solubilities in natural waters: chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988)

    Article  Google Scholar 

  37. Corrie, A., Williams, D.: Thermodynamic considerations in co-ordination. Part XXIV. Gibbs free-energy changes, enthalpies, and entropies of formation of complexes of glycinate, glycylglycinate, glycylglycylglycinate, cysteinate, and glutathionate with hydrogen and lead(II) ions and suggested aqueous structures. Chem. Soc. Dalton Trans. 1068–1073 (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virender K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crea, P., De Stefano, C., Kambarami, M. et al. Effect of Ionic Strength and Temperature on the Protonation of Oxidized Glutathione. J Solution Chem 37, 1245–1259 (2008). https://doi.org/10.1007/s10953-008-9310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9310-2

Keywords

Navigation