Skip to main content
Log in

Non-Covalent Interaction in Binary Thymidine/Polyamine Systems in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Results of equilibrium and NMR spectral studies have shown the formation of molecular complexes in the systems of thymidine with polyamines—ethylenediamine, 1,3-diaminopropane, putrescine, 3-aza-1,5-diaminopentane, 3-aza-1,6-diaminohexane, 4-aza-1,7-diaminoheptane, spermidine, 4,8-diaza-1,11-diaminoundecane or spermine. The overall stability constants of the adducts and the equilibrium constants of their formation have been determined. Relative to adenosine or cytidine, the pH range of complex formation is shifted towards higher values, which is a consequence of a significantly higher basicity of thymine and corresponds well with the assumed model of ion-ion or ion-dipole interactions. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated and the thymidine deprotonated. The -NH +3 groups from polyamine and the N(3) atom from thymidine have been identified as the centers of noncovalent interactions. The stability of the molecular complexes formed in the studied systems depends on the acid-base character of the substrates and on the structure of the reacting molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, R.B.: Metal ions binding to nucleoside and nucleotides. In: Xavier, A.V. (ed.) Frontiers in Bioinorganic Chemistry. VCH, Weinheim (1986)

    Google Scholar 

  2. Marzilli, L.G.: Metal complex of nucleic acid derivatives and nucleotides: Binding sites and structures. In: Eichhorn, G.L., Marzilli, L.G. (eds.) Metal Ions in Genetic Information Transfer, pp. 47–52. Elsevier/North-Holland, Amsterdam (1981)

    Google Scholar 

  3. Sigel, H.: Complexes of metal ions with various nucleic acids components. In: Berthon, G. (ed.) Handbook of Metal–Ligand Interactions in Biological Fluids, pp. 451–459. Marcel Dekker, New York (1995)

    Google Scholar 

  4. Martin, R.B.: Nucleoside sites for transition metal ion binding. Acc. Chem. Res. 18, 32–38 (1985)

    Article  CAS  Google Scholar 

  5. De Castro, B., Pereira, J., Gameiro, P., Lima, J.L.: Multinuclear NMR and potentiometric studies on the interaction of zinc and cadmium with cytidine and glycylglycine. The effect of the anion. J. Inorg. Biochem. 45, 53–64 (1992)

    Article  Google Scholar 

  6. Sherman, S.E., Lippard, S.J.: Structural aspects of platinum anticancer drug interactions with DNA. Chem. Rev. 87, 1153–1181 (1987)

    Article  CAS  Google Scholar 

  7. Sigel, H.: Isomeric equilibria in complexes of adenosine 5′-triphosphate with divalent metal ions. Solution structures of M(ATP)2− complexes. Eur. J. Biochem. 165, 65–72 (1987)

    Article  CAS  Google Scholar 

  8. Eichhorn, G.L.: Complex of Nucleosides and Nucleotides. In: Eichhorn, G.L. (ed.) Inorganic Biochemistry, pp. 1193–1202. Elsevier, Amsterdam (1973)

    Google Scholar 

  9. Fiskin, M., Beer, M.: Determination of base sequence in nucleic acids with the electron microscope, IV: nucleoside complexes with certain metal ions. Biochemistry 4, 1289–1294 (1965)

    Article  CAS  Google Scholar 

  10. Cohen, S.S.: A Guide to the Polyamines. Oxford University Press, Oxford (1998)

    Google Scholar 

  11. Sigel, H., Massoud, S.S.: Metal ion coordinating properties of pyrimidine-nucleoside 5′-monophosphates (CMP, UMP, TMP) and of simple phosphate monoesters, including D-ribose 5′-monophosphate. Establishment of relations between complex stability and phosphate basicity. Inorg. Chem. 27, 1447–1453 (1988)

    Article  Google Scholar 

  12. Casassas, E., Izquierdo-Ridorsa, A., Tauler, R.: Study of the acid-base behaviour and Cu(II) complexing properties of uracil and hypoxanthin-derived nucleotides in aqueous solution. J. Inorg. Biochem. 56, 187–199 (1994)

    Article  CAS  Google Scholar 

  13. Thomas, T., Thomas, T.J.: Polyamines in cell growth and cell death. Cell. Mol. Life Sci. 58, 244–258 (2001)

    Article  CAS  Google Scholar 

  14. Srinath, P., McQuarrie, S.A., Suresh, M.R.: Comparative uptake of polyamines by prostate and non-prostate cancer cell lines. Nucl. Med. Biol. 29, 497–503 (2002)

    Article  CAS  Google Scholar 

  15. Keniry, M.A.: A comparison of the association of spermine with duplex and quadruplex DNA by NMR. FEBS Lett. 542, 153–158 (2003)

    Article  CAS  Google Scholar 

  16. D’Agostino, L., Luccia, A.: Polyamines interact with DNA as molecular aggregates. Eur. J. Biochem. 269, 4317–4325 (2002)

    Article  CAS  Google Scholar 

  17. Pegg, A.E.: Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res. 48, 759–774 (1988)

    CAS  Google Scholar 

  18. Jänne, J., Alhonen, L., Leinonen, P.: Polyamines: from molecular biology to clinical applications. Ann. Med. 23, 241–259 (1991)

    Article  Google Scholar 

  19. Tabor, C.W., Tabor, H., Ann, Polyamines.: Rev. Biochem. 53, 749–790 (1984)

    Article  CAS  Google Scholar 

  20. Lomozik, L., Gasowska, A., Bolewski, L.: Noncovalent interactions in polyamine/nucleoside (or diaminocarboxylate) systems studied by potentiometric and NMR techniques. J. Chem. Soc. Perkin Trans. 2, 1161–1165 (1997)

    Google Scholar 

  21. Lomozik, L., Gasowska, A.: Investigations of binding sites and stability of complexes formed in ternary Cu(II)-adenosine or cytidine-putrescine systems. J. Inorg. Biochem. 62, 103–115 (1996)

    Article  CAS  Google Scholar 

  22. Gasowska, A., Lomozik, L., Jastrzab, R.: Mixed-ligand complexes of copper(II) ions with AMP and CMP in the systems with polyamines and noncovalent interaction between bioligands. J. Inorg. Biochem. 78, 139–147 (2000)

    Article  CAS  Google Scholar 

  23. Lomozik, L., Jastrzab, R., Gasowska, A.: Interactions in binary and ternary systems including Cu(II), uridine, uridine 5′-monophosphate or diamine. Polyhedron 19, 1145–1154 (2000)

    Article  CAS  Google Scholar 

  24. Irving, M.H., Miles, M.G., Pettit, L.D.: A study of some problems in determining the stoicheiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode Anal. Chim. Acta 38, 475–488 (1967)

    Article  CAS  Google Scholar 

  25. Gans, P., Sabatini, A., Vacca, A.: SUPERQUAD: An improved general program for computation of formation constants from potentiometric data. J. Chem. Soc. Dalton Trans. 1195–1200 (1985)

  26. Ingri, N., Kakolowicz, W., Sillen, L.G., Warqvist, B.: High-speed computers as a supplement to graphical methods, V: haltafall a general program for calculating the composition of equilibrium mixtures. Talanta 14, 1261–1286 (1967)

    Article  CAS  Google Scholar 

  27. Lomozik, L., Jaskolski, M., Wojciechowska, A.: A multistage verification procedure for the selection of models in the studies of complex formation equilibria. Pol. J. Chem. 65, 1797–1807 (1991)

    CAS  Google Scholar 

  28. Glasoe, P.K., Long, F.A.: Use of glass electrodes to measure acidities in deuterium oxide. J. Phys. Chem. 64, 188–189 (1960)

    Article  CAS  Google Scholar 

  29. Knobloch, B., Linert, W., Singel, H.: Metal ion-binding properties of (N3)-deprotonated uridine, thymidine, and related pyrimidine nucleosides in aqueous solution. Proc. Natl. Acad. Sci. USA 102, 7459–7464 (2005)

    Article  CAS  Google Scholar 

  30. Gasowska, A., Lomozik, L.: Mode of coordination and stability of Cu(II) and Zn(II) complexes with adenosine, deoxyadenosine, cytidine and deoxycytidine. Monatsh. Chem. 126, 13–22 (1995)

    Article  CAS  Google Scholar 

  31. Lomozik, L., Gasowska, A.: Complexes of copper(II) with spermine and noncovalent interactions in the systems including nucleosides or nucleotides. J. Inorg. Biochem. 72, 37–47 (1998)

    Article  CAS  Google Scholar 

  32. Lomozik, L., Jastrzab, R.: Non-covalent and coordination interactions in Cu(II) systems with uridine, uridine 5′-monophosphate and triamine or tetramine as biogenic amine analogues in aqueous solutions. J. Inorg. Biochem. 97, 179–190 (2003)

    Article  CAS  Google Scholar 

  33. Lomozik, L., Jastrzab, R.: Copper(II) complexes with uridine, uridine 5′-monophosphate, spermidine, or spermine in aqueous solution. J. Inorg. Biochem. 93, 132–140 (2003)

    Article  CAS  Google Scholar 

  34. Kryukova, N.P., Frolov, V.Y., Kolokolov, F.A., Bolotin, S.N., Panyushkin, V.T.: Synthesis and study of copper(II) complexes with aspartic acid, serine, and valine. Russ. J. Gen. Chem. 75, 503–506 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Jastrzab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jastrzab, R., Lomozik, L. Non-Covalent Interaction in Binary Thymidine/Polyamine Systems in Aqueous Solution. J Solution Chem 37, 1015–1029 (2008). https://doi.org/10.1007/s10953-008-9283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9283-1

Keywords

Navigation