Skip to main content
Log in

The Number of Water-Water Hydrogen Bonds in Water-Tetrahydrofuran and Water-Acetone Binary Mixtures Determined by Means of X-Ray Scattering

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The liquid structures of water-tetrahydrofuran (THF) and water-acetone binary mixtures were investigated by the X-ray scattering method. Comparison of the X-ray scattering data revealed that only one kind of intermolecular water-organic molecule interaction is commonly involved throughout all mole fractions of these liquid mixtures, in addition to the intermolecular water-water and organic molecule-organic molecule interactions, which are present in neat water and organic liquids, respectively. On the basis of this finding, we proposed a new analytical method for studying liquid mixtures. By this method the structural information on the intermolecular water-organic molecule interaction as well as the concentrations of the intermolecular water-water, water-organic molecules, and organic molecule-organic molecule interactions were obtained. Combining the concentrations of the intermolecular water-water interaction with the concentrations of water in the liquid mixtures, the number of water-water hydrogen bonds at various mole fractions was experimentally determined for the first time. From the dependence of the number of water-water hydrogen bonds on the composition of the liquid mixtures, the change of the size of the self-associated water-water clusters was deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutmann, V.: The Donor-Acceptor Approach to Molecular Interactions. Plenum, New York (1978)

    Google Scholar 

  2. Erlich, R.H., Popov, A.I.: Spectroscopic studies of ionic solvation. X. A study of the solvation of sodium ions in nonaqueous solvents by 23Na nuclear magnetic resonance. J. Am. Chem. Soc. 93, 5620–5623 (1971)

    Article  CAS  Google Scholar 

  3. Benedetti, A.V., Cilense, M., Vollet, D.R., Montone, R.C.: Thermodynamic properties of liquid mixtures. III. Acetone-water. Thermochim. Acta 66, 219–223 (1983)

    Article  CAS  Google Scholar 

  4. Inglese, A., Ferino, I., Marongiu, B., Solinas, V., Torrazza, S.: Thermodynamic properties of aqueous nonelectrolyte mixtures. Excess enthalpies of water + cyclic ether mixtures at 298.15 K. Thermochim. Acta 65, 169–177 (1983)

    Article  CAS  Google Scholar 

  5. Baldauf, W., Knapp, H.: Experimental determination of diffusion coefficients, viscosities, densities and refractive indexes of 11 binary liquid mixtures. Ber. Bunsenges. Phys. Chem. 87, 304–309 (1983)

    CAS  Google Scholar 

  6. Nayak, J.N., Aralaguppi, M.I., Naidu, B.V.K., Aminabhavi, T.M.: Thermodynamic properties of water + tetrahydrofuran and water + 1, 4-dioxane mixtures at (303.15, 313.15 and 323.15) K. J. Chem. Eng. Data 49, 468–474 (2004)

    Article  CAS  Google Scholar 

  7. Kamogawa, K., Kitagawa, T.: Raman difference spectroscopy of the C-H stretching vibrations. Frequency shifts and excess quantities for acetone/water and acetonitrile/water solutions. J. Phys. Chem. 90, 1077–1081 (1986)

    Article  CAS  Google Scholar 

  8. Venables, D.S., Schmuttenmaer, C.A.: Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol. J. Chem. Phys. 113, 11222–11236 (2000)

    Article  CAS  Google Scholar 

  9. Idrissi, A., Longelin, S., Sokolić, F.: Study of aqueous acetone solution at various concentrations: low-frequency Raman and molecular dynamics simulations. J. Phys. Chem. B 105, 6004–6009 (2001)

    Article  CAS  Google Scholar 

  10. Max, J.-J., Chapados, C.: Infrared spectroscopy of acetone-water liquid mixtures. I. Factor analysis. J. Chem. Phys. 119, 5632–5643 (2003)

    Article  CAS  Google Scholar 

  11. Max, J.-J., Chapados, C.: Infrared spectroscopy of acetone-water liquid mixtures. II. Molecular model. J. Chem. Phys. 120, 6625–6641 (2004)

    Article  CAS  Google Scholar 

  12. Perera, A., Sokolic, F.: Modeling nonionic aqueous solutions: the acetone-water mixture. J. Chem. Phys. 121, 11272–11282 (2004)

    Article  CAS  Google Scholar 

  13. Takamuku, T., Nakamizo, A., Tabata, M., Yoshida, K., Yamaguchi, T., Otomo, T.: Large-angle X-ray scattering, small-angle neutron scattering, and NMR relaxation studies on mixing state of 1, 4-dioxane-water, 1, 3-dioxane-water, and tetrahydrofuran-water mixtures. J. Mol. Liquids 103–104, 143–159 (2003)

    Article  Google Scholar 

  14. Bowron, D.T., Finney, J.L., Soper, A.K.: Structural characteristics of a 0.23 mole fraction aqueous solution of tetrahydrofuran at 20 °C. J. Phys. Chem. B 110, 20235–20245 (2006)

    Article  CAS  Google Scholar 

  15. Stangret, J., Gampe, T.: Hydration of tetrahydrofuran derived from FTIR spectroscopy. J. Mol. Struct. 734, 183–190 (2005)

    Article  CAS  Google Scholar 

  16. Fukasawa, T., Amo, Y., Tominaga, Y.: Low frequency Raman scattering study of tert-butyl alcohol-water and tetrahydrofuran-water binary mixtures. J. Chem. Phys. 118, 6387–6393 (2003)

    Article  CAS  Google Scholar 

  17. Gomide Freitas, L.C., Margues Cordeiro, J.M.: Monte Carlo simulation of water-tetrahydrofuran mixtures. J. Mol. Struct. (THEOCHEM) 335, 189–195 (1995)

    Article  CAS  Google Scholar 

  18. Katayama, M., Komori, K., Ozutsumi, K., Ohtaki, H.: The liquid structure of various nitriles and N,N-dimethylformamide studied by the X-ray diffraction method using a CCD detector. Z. Phys. Chem. 218, 659–677 (2004)

    CAS  Google Scholar 

  19. Azaroff, L.: Polarization correction for crystal-monochromatized X-radiation. Acta Crystallogr. 8, 701–704 (1955)

    Article  CAS  Google Scholar 

  20. Warren, B., Mozzi, R.: Multiple scattering of X-rays by amorphous samples. Acta Crystallogr. 21, 459–461 (1966)

    Article  CAS  Google Scholar 

  21. Krough-Moe, J.: A method for converting experimental X-ray intensities to an absolute scale. Acta Crystallogr. 9, 951–953 (1956)

    Article  Google Scholar 

  22. Norman, N.: The Fourier transform method for normalizing intensities. Acta Crystallogr. 10, 370–373 (1957)

    Article  CAS  Google Scholar 

  23. Cromer, D.T.: Compton scattering factors for aspherical free atoms. J. Chem. Phys. 50, 4857–4859 (1969)

    Article  CAS  Google Scholar 

  24. Cromer, D.T., Liberman, J.: Relativistic calculation of anomalous scattering factors for X rays. J. Chem. Phys. 53, 1891–1898 (1970)

    Article  CAS  Google Scholar 

  25. Johansson, G., Sandström, M.: Computer programs for the analysis of data on X-ray diffraction by liquids. Chem. Scr. 4, 195–198 (1973)

    CAS  Google Scholar 

  26. Katayama, M., Ashiki, S., Ozutsumi, K.: Analysis of liquid structure without construction of any structure model by the X-ray scattering method. Anal. Sci. 23, 929–936 (2007)

    Article  CAS  Google Scholar 

  27. Cadioli, B., Gallinella, E., Coulombeau, C., Jobic, H., Berthier, G.: Geometric structure and vibrational spectrum of tetrahydrofuran. J. Phys. Chem. 97, 7844–7856 (1993)

    Article  CAS  Google Scholar 

  28. Luger, P., Buschmann, J.: Twist conformation of tetrahydrofuran in the crystal. Angew. Chem. Int. Ed. Engl. 22, 410 (1983)

    Article  Google Scholar 

  29. Geise, H.J., Adams, W.J., Bartell, L.S.: Electron diffraction study of gaseous tetrahydrofuran. Tetrahedron 25, 3045–3052 (1969)

    Article  CAS  Google Scholar 

  30. Iijima, T.: Zero-point average structure of a molecule containing two symmetric internal rotors. Acetone. Bull. Chem. Soc. Jpn. 45, 3526–3530 (1972)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Ozutsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katayama, M., Ozutsumi, K. The Number of Water-Water Hydrogen Bonds in Water-Tetrahydrofuran and Water-Acetone Binary Mixtures Determined by Means of X-Ray Scattering. J Solution Chem 37, 841–856 (2008). https://doi.org/10.1007/s10953-008-9276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9276-0

Keywords

Navigation