Skip to main content
Log in

Experimental Data and Modeling of Solid–Liquid Equilibria of Binary Systems Containing Dibenzofuran and Long Chain n-alkanes

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solid–liquid equilibria (SLE) of binary mixtures of several n-alkanes (n-octadecane, n-eicosane, n-tetracosane, n-pentacosane, n-triacontane) and dibenzofuran covering the whole composition range were measured by differential scanning calorimetry (DSC) in a temperature range of 301–356 K. The dibenzofuran and the n-alkanes are completely miscible in the liquid state but non-miscible in the solid state, and in the context of this work, they seem to exhibit eutectic behavior. A linear trend is obtained for the eutectic temperature and eutectic composition versus the number of carbon atoms of n-alkane. The experimental data were compared to predictions made by using the ideal solution model, the DISQUAC model and several versions of the UNIFAC model, including the classical UNIFAC, the modified versions of Lyngby and Dortmund, and the recently proposed modified UNIFAC (NIST) model, to account for non-ideality in the liquid phase. Moreover, the experimental data were also compared with COSMO-RS predictions that utilize quantum chemical calculations and statistical thermodynamics to interpret the behavior of molecular interactions in the binary mixture. A good agreement was obtained between the predicted and the experimental temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jennings, D.W., Weispfennig, K.: Experimental solubility data of various n-alkane waxes: effects of alkane chain length, alkane odd versus even carbon number structures, and solvent chemistry on solubility. Fluid Phase Equilib. 227, 27–35 (2005). https://doi.org/10.1016/j.fluid.2004.10.021

    Article  CAS  Google Scholar 

  2. Burger, E., Perkins, T., Striegler, J.: Studies of wax deposition in the trans Alaska pipeline. J. Petrol. Technol. 33, 1075–1086 (1981). https://doi.org/10.2118/8788-PA

    Article  CAS  Google Scholar 

  3. Roenningsen, H.P., Bjoerndal, B., Baltzer Hansen, A., Batsberg Pedersen, W.: Wax precipitation from North Sea crude oils: 1. Crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties. Energy Fuels 5, 895–908 (1991). https://doi.org/10.1021/ef00030a019

    Article  CAS  Google Scholar 

  4. Coutinho, J.A., Edmonds, B., Moorwood, T., Szczepanski, R., Zhang, X.: Reliable wax predictions for flow assurance. In: European Petroleum Conference, OnePetro, (2002). https://doi.org/10.2118/78324-MS

  5. Coto, B., Martos, C., Espada, J.J., Robustillo, M.D., Peña, J.L.: Analysis of paraffin precipitation from petroleum mixtures by means of DSC: iterative procedure considering solid–liquid equilibrium equations. Fuel 89, 1087–1094 (2010). https://doi.org/10.1016/j.fuel.2009.12.010

    Article  CAS  Google Scholar 

  6. Hammami, A., Raines, M.: Paraffin deposition from crude oils: comparison of laboratory results with field data. SPE J. 4, 9–18 (1999). https://doi.org/10.2118/54021-PA

    Article  Google Scholar 

  7. Tuntawiroon, J., Mahidol, C., Navasumrit, P., Autrup, H., Ruchirawat, M.: Increased health risk in Bangkok children exposed to polycyclic aromatic hydrocarbons from traffic-related sources. Carcinogenesis 28, 816–822 (2007). https://doi.org/10.1093/carcin/bgl175

    Article  CAS  PubMed  Google Scholar 

  8. Djordjevic, N.: Solubilities of polycyclic aromatic hydrocarbon solids in n-octadecane. Thermochim. Acta 177, 109–118 (1991). https://doi.org/10.1016/0040-6031(91)80089-2

    Article  CAS  Google Scholar 

  9. Aoulmi, A., Bouroukba, M., Solimando, R., Rogalski, M.: Thermodynamics of mixtures formed by polycyclic aromatic hydrocarbons with long chain alkanes. Fluid Phase Equilib. 110, 283–297 (1995). https://doi.org/10.1016/0378-3812(95)02759-8

    Article  CAS  Google Scholar 

  10. Mahmoud, R., Solimando, R., Bouroukba, M., Rogalski, M.: Solid−liquid equilibrium and excess enthalpy measurements in binary dibenzofuran or xanthene+normal long-chain alkane systems. J. Chem. Eng. Data 45, 433–436 (2000). https://doi.org/10.1021/je9902084

    Article  CAS  Google Scholar 

  11. Hafsaoui, S., Mahmoud, R.: Solid-liquid equilibria of binary systems containing n-tetracosane with naphthalene or dibenzofuran: prediction with UNIFAC model. J. Therm. Anal. Calorim. 88, 565–570 (2007). https://doi.org/10.1007/s10973-006-8084-2

    Article  CAS  Google Scholar 

  12. Burley, S., Petsko, G.: Weakly polar interactions in proteins. Adv. Protein Chem. 39, 125–189 (1988). https://doi.org/10.1016/S0065-3233(08)60376-9

    Article  CAS  PubMed  Google Scholar 

  13. Mahmoud, R., Solimando, R., Rogalski, M.: Solid–liquid equilibria of systems containing pyrene and long chain normal-alkanes. Fluid Phase Equilib. 148, 139–146 (1998). https://doi.org/10.1016/S0378-3812(98)00204-0

    Article  CAS  Google Scholar 

  14. Boudouh, I., Djemai, I., González, J.A., Barkat, D.: Solid–liquid equilibria of biphenyl binary systems. J. Mol. Liq. 216, 764–770 (2016). https://doi.org/10.1016/j.molliq.2016.02.010

    Article  CAS  Google Scholar 

  15. Boudouh, I., Hafsaoui, S.L., Mahmoud, R., Barkat, D.: Measurement and prediction of solid–liquid phase equilibria for systems containing biphenyl in binary solution with long-chain n-alkanes. J. Therm. Anal. Calorim. 125, 793–801 (2016). https://doi.org/10.1007/s10973-016-5407-9

    Article  CAS  Google Scholar 

  16. Boudouh, I., Barkat, D., González, J.A., Djemai, I.: Solid-liquid equilibria of indole binary systems. Thermochim. Acta 644, 13–19 (2016). https://doi.org/10.1016/j.tca.2016.10.003

    Article  CAS  Google Scholar 

  17. Boudouh, I., González, J.A., Djemai, I., Barkat, D.: Solid-liquid equilibria of eicosane, tetracosane or biphenyl + 1-octadecanol, or + 1-eicosanol mixtures. Fluid Phase Equilib. 442, 28–37 (2017). https://doi.org/10.1016/j.fluid.2017.03.012

    Article  CAS  Google Scholar 

  18. Boudouh, I., González, J.A., Coto, B., Moussaoui, A., Kasmi, A., Djemai, I., Hadj-Kali, M.K.: Solid-liquid equilibria for dibenzofuran or Xanthene + heavy hydrocarbons: Experimental measurements and modeling. J. Mol. Liq. 116536, 335 (2021). https://doi.org/10.1016/j.molliq.2021.116536

    Article  CAS  Google Scholar 

  19. Boudouh, I., Tamura, K., Djemai, I., Robustillo-Fuentes, M.D., Hadj-Kali, M.K.: Solid-liquid equilibria for biphenyl+ n-tetracosane binary mixtures and n-tetracosane+ dibenzofuran+ biphenyl ternary mixtures: experimental data and prediction with UNIFAC models. Int. J. Thermophys. 43, 1–18 (2022). https://doi.org/10.1007/s10765-022-03025-w

    Article  CAS  Google Scholar 

  20. Hansen, H.K., Rasmussen, P., Fredenslund, A., Schiller, M., Gmehling, J.: Vapor–liquid equilibria by UNIFAC group contribution. 5. Revision and extension. Ind. Eng. Chem. Res. 30, 2352–2355 (1991). https://doi.org/10.1021/ie00058a017

    Article  CAS  Google Scholar 

  21. Weidlich, U., Gmehling, J.: A modified UNIFAC model. 1. Prediction of VLE, hE, and. \({\gamma^{\infty}}\). Ind. Eng. Chem. Res. 26, 1372–1381 (1987). https://doi.org/10.1021/ie00067a018

    Article  CAS  Google Scholar 

  22. Gmehling, J., Li, J., Schiller, M.: A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res. 32, 178–193 (1993). https://doi.org/10.1021/ie00013a024

    Article  CAS  Google Scholar 

  23. Fredenslund, A., Jones, R.L., Prausnitz, J.M.: Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975)

    Article  CAS  Google Scholar 

  24. Larsen, B.L., Rasmussen, P., Fredenslund, A.: A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res. 26, 2274–2286 (1987). https://doi.org/10.1021/ie00071a018

    Article  CAS  Google Scholar 

  25. Kang, J.W., Diky, V., Frenkel, M.: New modified UNIFAC parameters using critically evaluated phase equilibrium data. Fluid Phase Equilib. 388, 128–141 (2015). https://doi.org/10.1016/j.fluid.2014.12.042

    Article  CAS  Google Scholar 

  26. Kehiaian, H.V.: Group contribution methods for liquid mixtures: A critical review. Fluid Phase Equilib. 13, 243–252 (1983). https://doi.org/10.1016/0378-3812(83)80098-3

    Article  CAS  Google Scholar 

  27. Klamt, A.: Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99, 2224–2235 (1995)

    Article  CAS  Google Scholar 

  28. Prausnitz, J.M., Lichtenthaler, R.N., De Azevedo, E.G.: Molecular Thermodynamics of Fluid Phase Equilibria. Pearson Education, New Jersey (1998)

    Google Scholar 

  29. Guggenheim, E.A.: Mixtures. Oxford University Press, Oxford (1952)

    Google Scholar 

  30. Bondi, A.A.: Physical properties of Molecular Crystals Liquids, and Glasses. Wiley, New York (1968)

    Google Scholar 

  31. Kehiaian, H.V., Grolier, J.P.E., Benson, G.C.: Thermodynamics of organic mixtures. A generalized quasichemical theory in terms of group surface interactions. J. Chim. Phys. 75, 1031–1048 (1978). https://doi.org/10.1051/jcp/1978751031

    Article  CAS  Google Scholar 

  32. González, J., de la Fuente, I.G., Cobos, J., Casanova, C., Ait-Kaci, A.: Application of the zeroth approximation of the DISQUAC model to cyclohexane+ n-alkane mixtures using different combinatorial entropy terms. Fluid Phase Equilib. 112, 63–87 (1995). https://doi.org/10.1016/0378-3812(95)02783-B

    Article  Google Scholar 

  33. González, J.A., de la Fuentá, I.G., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s Law: Part 4. Application of the DISQUAC model to mixtures of 1-alkanols with primary or secondary linear amines. Comparison with Dortmund UNIFAC and ERAS results. Fluid Phase Equilib. 168, 31–58 (2000). https://doi.org/10.1016/S0378-3812(99)00326-X

    Article  Google Scholar 

  34. González, J.A., Zawadzki, M., Domanska, U.: Thermodynamics of mixtures containing polycyclic aromatic hydrocarbons. J. Mol. Liq. 143, 134–140 (2008). https://doi.org/10.1016/j.molliq.2008.07.005

    Article  CAS  Google Scholar 

  35. Marongiu, B., Piras, A., Porcedda, S., Tuveri, E.: Excess enthalpies of aromatic ether or aromatic ketone (1)+ n-heptane (2) mixtures DISQUAC analysis. J. Therm. Anal. Calorim. 92, 137–144 (2008). https://doi.org/10.1007/s10973-007-8752-x

    Article  CAS  Google Scholar 

  36. Klamt, A., Jonas, V., Bürger, T., Lohrenz, J.C.: Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074–5085 (1998)

    Article  CAS  Google Scholar 

  37. Klamt, A., Eckert, F.: COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib. 172, 43–72 (2000). https://doi.org/10.1016/S0378-3812(00)00357-5

    Article  CAS  Google Scholar 

  38. Klamt, A.: COSMO-RS: from Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. Elsevier, Amsterdam (2005)

    Google Scholar 

  39. Eckert, F., Klamt, A.: Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 48, 369–385 (2002). https://doi.org/10.1002/aic.690480220

    Article  CAS  Google Scholar 

  40. Kniaź, K.: Influence of size and shape effects on the solubility of hydrocarbons: the role of the combinatorial entropy. Fluid Phase Equilib. 68, 35–46 (1991). https://doi.org/10.1016/0378-3812(91)85009-J

    Article  Google Scholar 

  41. Khimeche, K., Boumrah, Y., Benziane, M., Dahmani, A.: Solid–liquid equilibria and purity determination for binary n-alkane + naphthalene systems. Thermochim. Acta 444, 166–172 (2006). https://doi.org/10.1016/j.tca.2006.03.011

    Article  CAS  Google Scholar 

  42. Benziane, M., Khimeche, K., Dahmani, A., Nezar, S., Trache, D.: Experimental determination and prediction of (solid+ liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids. Mol. Phys. 110, 1383–1389 (2012). https://doi.org/10.1007/s10973-012-2654-2

    Article  CAS  Google Scholar 

  43. Company, J.C.: Mésure et interprétation des équilibres de cristallisation de solutions de paraffines lourdes et d’hydrocarbures aromatiques. Chem. Eng. Sci. 28, 318–323 (1973). https://doi.org/10.1016/0009-2509(73)85117-6

    Article  CAS  Google Scholar 

  44. Mondieig, D., Rajabalee, F., Metivaud, V., Oonk, H., Cuevas-Diarte, M.: n-Alkane binary molecular alloys. Chem. Mater. 16, 786–798 (2004). https://doi.org/10.1021/cm031169p

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. BOUDOUH wishes to express his gratitude to Pr. Juan Antonio González, Professor at the University of Valladolid, Spain, for having welcomed him to the G.E.T.E.F Laboratory. Dr. Hadj-Kali also expresses his appreciation to the Researchers Supporting Project (RSP2023R361), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Issam Boudouh: Conceptualization, Investigation, Writing – review & editing, Visualization, Validation. Baudilio Coto: Investigation, Writing – review & editing, Visualization, Software, Data curation, Validation, Supervision. Juan Antonio González: Conceptualization, Investigation, Writing – original draft, Visualization, Software, Data curation, Validation, Supervision. Irfan Wazeer: Investigation, Data curation, Writing – review & editing. M. Zulhaziman M. Salleh: Investigation, Writing – review & editing, Visualization, Software, Data curation, Validation. Ismahane Djemai: Writing – review & editing. Maria Dolores Robustillo: Investigation, Data curation, Writing – review & editing. Mohamed K. Hadj-Kali: Investigation, Writing – review & editing, Visualization, Software, Data curation, Validation.

Corresponding author

Correspondence to Issam Boudouh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 318 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudouh, I., Coto, B., González, J.A. et al. Experimental Data and Modeling of Solid–Liquid Equilibria of Binary Systems Containing Dibenzofuran and Long Chain n-alkanes. J Solution Chem 52, 1083–1106 (2023). https://doi.org/10.1007/s10953-023-01297-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01297-w

Keywords

Navigation