Skip to main content
Log in

Estimates of Internal Pressure and Molar Refraction of Imidazolium Based Ionic Liquids as a Function of Temperature

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Estimates of the internal pressure ( U/ V) T of the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and 1-methyl-3-octylimidazolium tetrafluoroborate [OMIM][BF4] were made from experimentally determined densities and speeds of sound in the temperature range 283.15 to 343.15 K. Values ( U/ V) T for all the ILs studied are higher than those of water and molecular organic liquids. We also measured the refractive indices n D in the temperature range 288.15 to 343.15 K and estimated the molar refraction R M. Refractive indices of ILs were also higher than those of normal organic liquids but were comparable to those of long hydrocarbon chain organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordon, C.M., Holbrey, J.D., Kennedy, A.R., Seddon, K.R.I.: Ionic liquid crystals: hexafluorophosphate salts. J. Mater. Chem. 8, 2627–2636 (1998)

    Article  CAS  Google Scholar 

  2. Seddon, K.R.: Room-temperature ionic liquids: neoteric solvents for clean catalysis. Kinet. Katal. 37, 693–697 (1996)

    CAS  Google Scholar 

  3. Holbrey, J.D., Seddon, K.R.: Ionic liquids. Clean Prod. Process. 1, 223–236 (1999)

    Google Scholar 

  4. Dack, M.R.J.: The importance of solvent internal pressure and cohesion to solution phenomena. Chem. Soc. Rev. 4, 211–229 (1975)

    Article  CAS  Google Scholar 

  5. Kumar, A.: Can internal pressure describe the effect of salt in aqueous Diels-Alder reaction? A possible explanation. J. Org. Chem. 59, 230–231 (1994)

    Article  CAS  Google Scholar 

  6. Kumar, A.: Rate enhancement in Diels-Alder reactions by perchlorate salts in nonaqueous solvents: an alternate explanation. J. Org. Chem. 59, 4612–4617 (1994)

    Article  CAS  Google Scholar 

  7. Kumar, A.: Stereoselectivities and reaction rates in Diels-Alder reactions promoted by non-aqueous solvents and their aqueous mixtures: correlations with non-adjustable parameters. J. Phys. Org. Chem. 9, 287–292 (1996)

    Article  CAS  Google Scholar 

  8. Hildebrand, J.H., Scott, R.L.: Solubility of Non-Electrolytes, 3rd edn. Reinhold, New York (1950)

    Google Scholar 

  9. Hildebrand, J.H., Scott, R.L.: Regular Solutions. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  10. Swiderski, K., McLean, A., Gordon, C.M., Vaugha, D.H.: Estimates of internal energies of vaporization of some room temperature ionic liquids. Chem. Commun., 2178–2179 (2004)

  11. Paulechka, Y.U., Zaitsau, D.H., Kabo, G.J., Strechan, A.A.: Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Thermochim. Acta 439, 158–160 (2005)

    Article  CAS  Google Scholar 

  12. Zaitsau, D.H., Kabo, G.J., Strechan, A.A., Paulechka, Y.U., Tschersich, A., Verevkin, S.P., Heintz, A.: Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J. Phys. Chem. A 110, 7303–7306 (2006)

    Article  CAS  Google Scholar 

  13. Santos, L.M.N.B.F., Lopes, J.N.C., Coutinho, J.A.P., Esperancüa, J.M.S.S., Gomes, L.R., Marrucho, I.M., Rebelo, L.P.N.: Ionic liquids: first direct determination of their cohesive energy. J. Am. Chem. Soc. 129, 284–285 (2007)

    Article  CAS  Google Scholar 

  14. Seddon, K.R., Stark, A., Torres, M.J.: The influence of chloride water and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)

    Article  CAS  Google Scholar 

  15. Blanchard, L.A., Gu, Z., Brennecke, J.F.: High-pressure phase behavior of ionic liquid/CO2 systems. J. Phys. Chem. B 105, 2437–2444 (2001)

    Article  CAS  Google Scholar 

  16. Vogel, A.I.: A Textbook of Quantitative Inorganic Analysis, 3rd edn. Longmans, London (1961)

    Google Scholar 

  17. Rebelo, L.P.N., Najdanovic-Visak, V., Visak, Z.P., Nunes da Ponte, M., Szydlowski, J., Cerdeirina, C.A., Troncoso, J., Romani, L., Esperancüa, J.M.S.S., Guedes, H.J.R., de Sousa, H.C.: A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions. Green Chem. 6, 369–381 (2004)

    Article  CAS  Google Scholar 

  18. Tekin, A., Safarov, J., Shahverdiyev, A., Hassel, E.: (p,ρ,T) Properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate at T=(298.15 to 398.15) K and pressures up to p=40 MPa. J. Mol. Liquids 136, 177–182 (2007)

    Article  CAS  Google Scholar 

  19. Jacquemin, J., Husson, P., Padua, A.A.H., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)

    Article  CAS  Google Scholar 

  20. Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P.: High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 52, 80–88 (2007)

    Article  CAS  Google Scholar 

  21. Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K., Brennecke, J.F.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 49, 954–964 (2004)

    Article  CAS  Google Scholar 

  22. Frez, C., Diebold, G.J., Tran, C.D., Yu, S.: Determination of thermal diffusivities, thermal conductivities, and sound speeds of room-temperature ionic liquids by the transient grating technique. J. Chem. Eng. Data 51, 1250–1255 (2006)

    Article  CAS  Google Scholar 

  23. Deetlefs, M., Seddon, K.R., Shara, M.: Predicting physical properties of ionic liquids. Phys. Chem. Chem. Phys. 8, 642–649 (2006)

    Article  CAS  Google Scholar 

  24. Zafarani-Moattar, M.T., Shekaari, H.: Volumetric and speed of sound of ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate with acetonitrile and methanol at T=(298.15 to 318.15) K. J. Chem. Eng. Data 50, 1694–1699 (2005)

    Article  CAS  Google Scholar 

  25. Troncoso, J., Cerdeiriña, C.A., Sanmamed, Y.A., Romaní, L., Rebelo, L.P.N.: Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J. Chem. Eng. Data 51, 1856–1859 (2006)

    Article  CAS  Google Scholar 

  26. Pereiro, A.B., Legido, J.L., Rodríguez, A.: Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence. J. Chem. Thermodyn. 39, 1168–1175 (2007)

    Article  CAS  Google Scholar 

  27. Brennecke, J.F., Gu, Z.: Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J. Chem. Eng. Data 47, 339–345 (2002)

    Article  CAS  Google Scholar 

  28. Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001)

    Article  CAS  Google Scholar 

  29. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. J. Chem. Eng. Data 51, 1161–1167 (2006)

    Article  CAS  Google Scholar 

  30. Arce, A., Rodil, E., Soto, A.: Physical and excess properties for binary mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate, [Omim][BF4], ionic liquid with different alcohols. J. Solution Chem. 35, 63–78 (2006)

    Article  CAS  Google Scholar 

  31. Del Grosso, V.A., Mader, C.W.: Speed of sound in pure water. J. Acoust. Soc. Am. 52, 1442–1446 (1972)

    Article  CAS  Google Scholar 

  32. Surdo, A.L., Alzola, E.M., Millero, F.J.: The P.V.T. properties of concentrated aqueous electrolytes. I. Densities and apparent molar volumes of NaCl, Na2SO4, MgCl2 and MgSO4 solutions from 0.1 mol⋅kg−1 to saturation and from 273.15 to 323.15 K. J. Chem. Thermodyn. 14, 649–662 (1982)

    Article  Google Scholar 

  33. Crosthwaite, J.M., Muldoon, M.J., Dixon, J.K., Anderson, J.L., Brennecke, J.F.: Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn. 37, 559–568 (2005)

    Article  CAS  Google Scholar 

  34. Woodcock, L.V., Singer, K.: Thermodynamic and structural properties of liquid ionic salts obtained by Monte Carlo computation. Trans. Faraday Soc. 67, 12–30 (1971)

    Article  CAS  Google Scholar 

  35. Marcus, Y.: The Properties of Solvents. Wiley, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A. Estimates of Internal Pressure and Molar Refraction of Imidazolium Based Ionic Liquids as a Function of Temperature. J Solution Chem 37, 203–214 (2008). https://doi.org/10.1007/s10953-007-9231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9231-5

Keywords

Navigation