Skip to main content
Log in

Electrical Conductivity Studies of Quinic Acid and its Sodium Salt in Aqueous Solutions

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The electrical conductivities of aqueous solutions of quinic acid and its sodium salt were measured from 293.15 to 328.15 K in steps of 5 K. The molar conductivities of the sodium salt were treated by the Lee–Wheaton equation, in the form of Pethybridge and Taba, and the Kohlrausch equations. The limiting molar conductivities of the quinate anion were estimated, as well as the corresponding ionic association constants and standard thermodynamic functions of the ionic association reaction. The hydrodynamic radius of the quinate anion was calculated from the Walden rule and compared with the van der Waals radius. The dissociation constant of quinic acid was evaluated from the known value of the limiting molar conductivity of quinic acid using the conductivity equation of Pethybridge and Taba. The standard thermodynamic functions of the dissociation process, i.e., the Gibbs energy, enthalpy, entropy and heat capacity, were obtained using the non-empirical procedure given by Clarke and Glew. The standard thermodynamic functions of dissociation of quinic acid are discussed in terms of solute–solvent interactions and stabilization of the quinate anion due to hydrogen bonding of the α-hydroxyl group to the carboxyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barco, A., Benetti, S., DeRisi, C., Marchetti, P., Pollini, G.P., Zanirato, V.: D-(−)-quinic acid: a chiron store for natural product synthesis. Tetrahedron-Asymmetry 8, 3515–3545 (1997)

    Article  CAS  Google Scholar 

  2. Clifford, M.N.: Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden. J. Sci. Food Agric. 79, 362–372 (1999)

    Article  CAS  Google Scholar 

  3. Clifford, M.: What factors determine the intensity of coffee’s sensory attributes? Tea Coffee Trade J. 159, 35–39 (1987)

    Google Scholar 

  4. Allegretti, Y., Ferrer, E.G., Baro, A.C.G.: Oxovanadium(IV) complexes of quinic acid. Synthesis, characterization and potentiometric study. Polyhedron 19, 2613–2619 (2000)

    Article  CAS  Google Scholar 

  5. Garribba, E., Lodyga-Chruscinska, E., Sanna, D., Micera, G.: Oxovanadium(IV) binding to ligands containing donor sites. Inorg. Chim. Acta 322, 87–98 (2001)

    Article  CAS  Google Scholar 

  6. Inomata, Y., Haneda, T., Howell, F.S.: Characterization and crystal structures of zinc(II) and cadmium(II) complexes with D-(−)-quinic acid. J. Inorg. Biochem. 76, 13–17 (1999)

    Article  CAS  Google Scholar 

  7. Castillo-Blum, S.E., Barba-Behrens, N.: Coordination chemistry of some biologically active ligands. Coord. Chem. Rev. 196, 3–30 (2000)

    Article  CAS  Google Scholar 

  8. Suryaprakash, P., Kumar, R.P., Prakash, V.: Thermodynamics of interaction of caffeic acid and quinic acid with multisubunit proteins. Int. J. Biol. Macromol. 27, 219–228 (2000)

    Article  PubMed  CAS  Google Scholar 

  9. Gonzalez, C., Carballido, M., Castedo, L.: Synthesis of polyhydroxycyclohexanes and relatives from (−)-quinic acid. J. Org. Chem. 68, 2248–2255 (2003)

    Article  PubMed  CAS  Google Scholar 

  10. Marco-Contelles, J.: Cyclohexane epoxides—chemistry and biochemistry of (+)-cyclophellitol. Eur. J. Org. Chem. 9, 1607–1618 (2001)

    Article  Google Scholar 

  11. Timberlake, C.F.: Complex formation between copper and some organic acids, phenols and phenolic acids occurring in fruit. J. Chem. Soc. 2795–2798 (1959)

  12. Lide, D.R.: In: CRC Handbook of Chemistry and Physics, 76th edn., pp. 5–86. CRC Press, Boca Raton (1995)

    Google Scholar 

  13. Spieweck, F., Bettin, H.: Solid and liquid density determination—review. Technisches Messen 59, 285–292 (1992)

    CAS  Google Scholar 

  14. Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsimmetrical and mixed electrolytes. J. Chem. Soc. Faraday I 75, 1128–1144 (1979)

    Article  CAS  Google Scholar 

  15. Pethybridge, A.D., Taba, S.S.: Precise conductimetric studies on aqueous solutions of 2:2 electrolytes. J. Chem. Soc. Faraday I 76, 368–376 (1980)

    Article  CAS  Google Scholar 

  16. Abell, C., Allen, F.H., Bugg, T.D.H., Doyle, M.J., Raithby, P.R.: Structure of (−)-quinic acid. Acta Cryst. C44, 1287–1290 (1988)

    CAS  Google Scholar 

  17. Apelblat, A.: An analysis of the conductances of aqueous malonic acid. J. Mol. Liq. 73,74, 49–59 (1997)

    Article  CAS  Google Scholar 

  18. Riddick, J.A., Bunger, W.B., Sakano, T.K.: In: Weissberger, A. (ed.) Organic Solvents, Physical Properties and Methods of Purification, 4th edn. Techniques of Chemistry, vol. 2, p. 74. Wiley, New York (1986)

    Google Scholar 

  19. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Dover, New York (2002), p. 465

    Google Scholar 

  20. Archer, D.G., Wang, P.M.: The dielectric-constant of water and Debye–Huckel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411 (1990)

    Article  ADS  CAS  Google Scholar 

  21. Clarke, E.C.W., Glew, D.N.: Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc. 62, 539–547 (1966)

    Article  CAS  Google Scholar 

  22. Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions. Springer, Darmstad (1998), p. 73

    Google Scholar 

  23. Rudan-Tasič, D., Zupec, T., Klofutar, C., Bešter-Rogač, M.: A conductometric study of aqueous solutions of some cyclohexylsulfamates. J. Solution Chem. 34, 631–644 (2005)

    Article  CAS  Google Scholar 

  24. Bondi, A.: Van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    CAS  Google Scholar 

  25. Edward, T.J.: Molecular volumes and the Stokes–Einstein equation. J. Chem. Educ. 47, 261–270 (1970)

    Article  CAS  Google Scholar 

  26. Brummer, S.B., Hills, G.J.: Kinetic of ionic conductance. I. Energies of activation and the constant-volume principle. J. Chem. Soc. Faraday Trans. 5, 1816 (1961)

    Article  Google Scholar 

  27. Rudan-Tasič, D., Klofutar, C., Bešter-Rogač, M.: The electric conductivities of aqueous solutions of rubidium and cesium cyclohexylsulfamates, potassium acesulfame and sodium saccharin. Acta Chim. Slov. 53, 324–330 (2006)

    Google Scholar 

  28. Niazi, M.S.K., Khan, M.Z.I.: Thermodynamic dissociation-constants of salicylic and monochloroacetic acids in mixed-solvent systems from conductance measurements at 25 °C. J. Solution Chem. 22, 437–456 (1993)

    Article  CAS  Google Scholar 

  29. Papadopoulos, N., Avranas, A.: Dissociation of salicylic-acid, 2,4-dihydroxybenzoic acids, 2,5-dihydroxybenzoic acids and 2,6-dihydroxybenzoic acids in 1-propanol–water mixtures at 25 °C. J. Solution Chem. 20, 293–300 (1991)

    Article  CAS  Google Scholar 

  30. Niazi, M.S.K.: Conductivities and thermodynamic dissociation-constants for chloroacetic acid in binary mixed-solvent systems at 298.15 K. J. Chem. Eng. Data 38, 527–530 (1993)

    Article  CAS  Google Scholar 

  31. Apelblat, A.: Dissociation constants and limiting conductances of organic acids in water. J. Mol. Liq. 95, 99–145 (2002)

    Article  CAS  Google Scholar 

  32. Portanova, R., Lajunen, L.H.J., Tolazzi, M., Piispanen, J.: Critical evaluation of stability constants for α-hydroxycarboxylic acid complexes with proton and metal ions and the accompanying enthalpy changes. Part II. Aliphatic 2-hydroxycarboxylic acids. Pure Appl. Chem. 75, 495–540 (2003)

    CAS  Google Scholar 

  33. Christensen, J.J., Smith, D.E., Slade, M.D., Izatt, R.M.: Thermodynamics of proton ionization in dilute aqueous solution 16. ΔG° (pK), ΔH°, ΔS° and ΔC p° values from several cycloalkanecarboxylic acids 10, 25 and 40°. Thermochim. Acta 4, 17–24 (1972)

    Article  CAS  Google Scholar 

  34. Hepler, J.L., O’Hara, W.F.: Thermodynamic theory of acid dissociation of methyl-substituted phenols in aqueous solution. J. Phys. Chem. 65, 811–814 (1961)

    CAS  Google Scholar 

  35. Pitzer, K.S.: The heat of ionization of water, ammonium hydroxide and carbonic, phosphoric and sulfuric acids. The variation of ionization constants with temperature and entropy change with ionization. J. Am. Chem. Soc. 51, 2365–2379 (1937)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Šegatin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klofutar, C., Šegatin, N. Electrical Conductivity Studies of Quinic Acid and its Sodium Salt in Aqueous Solutions. J Solution Chem 36, 879–889 (2007). https://doi.org/10.1007/s10953-007-9154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9154-1

Keywords

Navigation