Skip to main content
Log in

On the Determination of Partial Molar Volumes, Partial Molar Refractions, Mean Electronic Polarizabilities and Effective Molecular Radii from Dilute Multi-component Data alone using Response Surface Models

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A quaternary system consisting of three solutes, namely ethanol, diethylene glycol (DEG) and triethylene glycol (TEG) in benzene at 298.15 K and 1.0125 × 105 Pa was studied. An experimental design in the range of concentration 0.006 < x solute−i < 0.023 was explored, optimizing the metric distance among the solutes to avoid clustering. On-line simultaneous experimental measurements using a densitometer and a refractometer were utilized to measure bulk solution density and bulk refractive index, respectively. Response surface models describing the total molar volume and total molar refraction were employed to determine the partial molar volumes and the partial molar refractions of each solute from the dilute multi-component data alone. Neither densities nor refractive indices of any of the pure components were used and no binary information was required for the analysis. Definitions for the mean electronic polarizability and the effective molecular radius of a solute based on the partial molar refraction were introduced. Subsequently, the mean electronic polarizabilities and the effective molecular radii for each solute in multi-component solutions, as well as the solvent were determined. The results obtained for the partial molar volumes, partial molar refractions, electronic polarizabilities and the effective molecular radii were in good agreement with those obtained from independent binary experiments as well as those from literature binary data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. (a) Cibulka, I.: Estimation of excess volume and density of ternary liquid mixtures of nonelectrolytes from binary data. Collect. Czech. Chem. Commun. 47, 1414–1419 (1982); (b) Jasinski, B., Malanowski, S.: Calculation of multicomponent vapor-liquid equilibrium from liquid boiling temperature data. Chem. Eng. Sci. 25, 913–920 (1970); (c) Kohler, F.: Estimation of the thermodynamic data for a ternary system from the corresponding binary systems. Monatsh. Chem. 91, 738–740 (1960); (d) Redlich, O., Kister, A.T.: Thermodynamics of non-electrolyte solutions. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    CAS  Google Scholar 

  2. 2. Tjahjono, M., Guo, L., Garland, M.: The development of a response surface model for the determination of infinite dilution partial molar volumes and excess volumes from dilute multi-component data alone. Implications for the characterization of non-isolatable solutes in complex homogeneous reactive systems. Chem. Eng. Sci. 60, 3239–3249 (2005)

    Article  CAS  Google Scholar 

  3. 3. Tjahjono, M., Allian, A.D., Garland, M.: The direct determination of partial molar volumes and reaction volumes in ultra-dilute non-reactive and reactive multi-component systems using a combined spectroscopic and modified response surface model approach. Dalton Trans. 12, 1505–1516 (2006)

    Article  CAS  Google Scholar 

  4. 4. Horvath, A.L.: Molecular Design: Chemical Structure Generation from the Properties of Pure Organic Compounds. Elsevier, Amsterdam (1992)

    Google Scholar 

  5. 5. Orge, B., Iglesias, M., Rodriquez, A., Canosa, J.M., Tojo, J.: Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane, and n-octane) at 298.15 K. Fluid Phase Equilib. 133, 213–227 (1997)

    Article  CAS  Google Scholar 

  6. 6. TRC Thermodynamic tables, Thermodynamic Research Center. Texas A&M University, College Station (1994)

  7. 7. Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents: Physical Properties and Methods of Purification, Vol. 2, 4th edn. Wiley Interscience, New York (1986)

    Google Scholar 

  8. 8. Canosa, J., Rodríguez, A., Tojo, J.: Densities, refractive indices and speeds of sound of the ternary mixtures (dimethyl carbonate + methanol + ethanol) and (dimethyl carbonate + methanol + 1-propanol) at T = 298.15 K. J. Chem. Thermodyn. 35, 2021–2031 (2003)

    Article  CAS  Google Scholar 

  9. 9. Müller, E.A., Rasmussen, P.J.: Densities and excess volumes in aqueous poly(ethylene glycol) solutions. J. Chem. Eng. Data 36, 214–217 (1991)

    Article  Google Scholar 

  10. 10. Rudan-Tasic, D., Klovutar, C.: Apparent molar volume and apparent molar refraction of mono-, di-, tri-, and tetra(oxyethylene) glycol in aqueous, 1,4-dioxane, and benzene solutions at 298.15 K. Monatsh. Chem. 134, 1185–1193 (2003)

    CAS  Google Scholar 

  11. 11. Rodríguez, A., Canosa, J., Tojo, J.: Physical properties of the ternary mixture dimethyl carbonate + methanol + benzene and its corresponding binaries at 298.15 K. J. Chem. Eng. Data 44, 1298–1303 (1999)

    Article  CAS  Google Scholar 

  12. 12. Acree, W.E.: Thermodynamic Properties of Nonelectrolyte Solution, Ch. 2. Academic Press, Orlando (1984)

    Google Scholar 

  13. 13. Lorenz, L.: über die Refractionsconstante. Annalen der Physik und Chemie 11, 70–103 (1880)

    Google Scholar 

  14. 14. Lorentz, H.A.: über die Beziehungzwischen der Fortpflanzungsgeschwindigkeit des Lichtes der Körperdichte. Annalen der Physik und Chemie 9, 641–665 (1880)

    Google Scholar 

  15. 15. Marsh, K.N., Burfitt, C.: Excess volumes for alcohols + non-polar solvents I. Ethanol + cyclohexane, + n-hexane, + benzene, + carbon tetrachloride, + cyclopentane, and + p-xylene. J. Chem. Thermodyn. 7, 955–968 (1975)

    Article  CAS  Google Scholar 

  16. 16. Hall, J.L., Campbell, R.J.: Polarization of ethanol in benzene. Proc. West Virginia Academy of Sci. 29, 53–57 (1957)

    Google Scholar 

  17. 17. Brocos, P., Piñeiro, Á., Bravo, R., Amigo, A.: Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Phys. Chem. Chem. Phys. 5, 550–557 (2003)

    Article  CAS  Google Scholar 

  18. 18. Glasstone, S.: Textbook of Physical Chemistry, Ch. 8. Van Nostrand, London (1946)

    Google Scholar 

  19. 19. Piñeiro, Á., Brocos, P., Amigo, A., Pintos, M., Bravo, R.: Refractive indexes of binary mixtures of tetrahydrofuran with 1-alkanols at 25 °C and temperature dependence of n and ρ for the pure liquids. J. Solution Chem. 31, 369–380 (2002)

    Article  Google Scholar 

  20. 20. Rutgers, A.J.: Physical Chemistry, Ch. 5. Interscience Pubs, New York (1954)

    Google Scholar 

  21. 21. Letcher, T.M., Bayles, J.W.: Thermodynamics of some binary liquid mixtures containing aliphatic amines. J. Chem. Eng. Data 16, 266–271 (1971)

    Article  Google Scholar 

  22. 22. Fucaloro, A.F.: Partial molar volumes from refractive index measurements. J. Chem. Educ. 79, 865–868 (2002)

    Article  CAS  Google Scholar 

  23. 23. Lampreia, I.M.S., Mendonça, A.F.S.S., Dias, S.M.A., Reis, J.C.R.: New tools for the analysis of refractive index measurements in liquid mixtures. Application to 2-diethylaminoethanol + water mixtures from 283.15 to 313.15 K. New J. Chem. 30, 609–614 (2006)

    Article  CAS  Google Scholar 

  24. 24. Hill, N.E., Vaughan, W.E., Price, A.H., Davies, M.: Dielectric Properties and Molecular Behaviour, p. 237. Van Nostrand Reinhold, London, New York (1969)

    Google Scholar 

  25. 25. D'Errico, G., Ciccarelli, D., Ortona, O., Vitagliano, V.: Mixed micellar aggregates of nonionic surfactants with short hydrophobic tails. J. Mol. Liq. 100, 241–253 (2002)

    Article  Google Scholar 

  26. 26. Chen, N., Chrambach, A.: Capillary electrophoresis of DNA fragments in 9–20% uncrosslinked polyacrylamide gels: unique separating capacity hypothetically related to maintenance of random-coil DNA conformation independently of gel concentration. J. Biochem. Bioph. Methods 35, 175–184 (1997)

    Article  CAS  Google Scholar 

  27. 27. Scherrer, R., Louden, L., Gerhardt, P.: Porosity of the yeast cell wall and membrane. J. Bacteriol. 118, 534–540 (1974)

    CAS  Google Scholar 

  28. 28. Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, p. 24. Wiley, New York (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Garland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tjahjono, M., Garland, M. On the Determination of Partial Molar Volumes, Partial Molar Refractions, Mean Electronic Polarizabilities and Effective Molecular Radii from Dilute Multi-component Data alone using Response Surface Models. J Solution Chem 36, 221–236 (2007). https://doi.org/10.1007/s10953-006-9109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9109-y

Keywords

Navigation