Skip to main content

Advertisement

Log in

The Calorimetric and Volumetric Properties of Selected α-Amino Acids and α,ω-Amino Acids in Water at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Relative densities and relative massic heat capacities have been measured for the amino acids β-alanine, 4-aminobutanoic acid, d,l-norleucine and d,l-norvaline in dilute aqueous solution at p = 0.1 MPa and T = (288.15, 298.15, 313.15 and 328.15) K. Apparent molar volumes and apparent molar heat capacities have been calculated and the isothermal concentration dependences of these properties have been modeled to yield apparent molar properties at infinite dilution. Values for apparent molar properties at infinite dilution are compared to those previously reported in the literature. Trends in the temperature dependences of the infinite dilution properties are discussed in terms of methylene group contributions and the variations in these contributions caused by the presence of ionic end groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Häckel, M., Hinz, H.-J., Hedwig, G.R.: Partial molar volumes of proteins: Amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10–90 C. Biophys. Chem. 82, 35–50 (1999)

    Article  Google Scholar 

  2. Häckel, M., Hinz, H.-J., Hedwig, G.R.: A new set of peptide-based group heat capacities for use in protein stability calculations. J. Mol. Biol. 291, 197–213 (1999)

    Article  Google Scholar 

  3. Makhatadze, G.I., Privalov, P.L., Heat capacity of proteins I. Partial molar heat capacity of individual amino acid residues in aqueous solution: Hydration effect. J. Mol. Biol. 213, 375–384 (1990)

    Article  CAS  Google Scholar 

  4. Privalov, P.L., Makhatadze, G.I.: Heat capacity of proteins I. Partial molar heat capacity of the unfolded polypeptide chain of proteins: Protein unfolding effects. J. Mol. Biol. 213, 385–391 (1990)

    Article  CAS  Google Scholar 

  5. Hakin, A.W., Duke, M.M., Groft, L.L., Marty, J.L., Rushfeldt, M.L.: Calorimetric investigation of aqueous amino acid and dipeptide systems from 288.15 to 328.15 K. Can. J. Chem. 73, 725–734 (1995)

    Article  CAS  Google Scholar 

  6. Hakin, A.W., Daisley, D.C., Delgado, L., Liu, J.L., Marriott, R.A., Marty, J.L., Tompkins, G.: Volumetric properties of glycine in water at elevated temperatures and pressures measured with a new optically driven vibrating-tube densimeter. J. Chem. Thermodyn. 30, 583–606 (1998)

    Article  CAS  Google Scholar 

  7. Marriott, R.A., Hakin, A.W., Liu, J.L.: Modeling of thermodynamic properties of amino acids and peptides using additivity and HKF theory. J. Solution Chem. 27, 771–802 (1998)

    Article  CAS  Google Scholar 

  8. Hakin, A.W., Duke, M.M., Marty, J.L., Preuss, K.E.: Some thermodynamic properties of aqueous amino acid systems at 288.15, 298.15, 313.15, and 328.15 K: Group additivity analyses of standard-state volumes and heat capacities. J. Chem. Soc. Faraday Trans. 90, 2027–2035 (1994)

    Article  CAS  Google Scholar 

  9. Hakin, A.W., Hedwig, G.R.: The partial molar heat capacities and volumes of some N-acetyl amino acid amides in aqueous solution over the temperature range 288.15 to 328.15 K. Phys. Chem. Chem. Phys. 2, 1795–1802 (2000)

    Article  CAS  Google Scholar 

  10. Liu, J.L., Hakin, A.W., Hedwig, G.R.: Amino acid derivatives as protein side-chain model compounds: The partial molar volumes and heat capacities of some N-acetyl-N′-methyl amino acid amides in aqueous solution. J. Solution Chem. 30, 861–883 (2001)

    Article  CAS  Google Scholar 

  11. Hakin, A.W., Kowalchuck, M.G., Liu, J.L., Marriott, R.A.: Thermodynamics of protein model compounds: Apparent and partial molar heat capacities and volumes of several cyclic dipeptides in water. J. Solution Chem. 29, 131–151 (2000)

    Article  CAS  Google Scholar 

  12. Hakin, A.W., Cavilla, B., Liu, J.L., Zorzetti, B.: Thermodynamics of protein model compounds: An investigation of the apparent and partial molar heat capacities and volumes of aqueous solutions of alanyl and seryl side-chain containing cyclic dipeptides. Phys. Chem. Chem. Phys. 3, 3805–3810 (2001)

    Article  CAS  Google Scholar 

  13. Coplen, T.B.: Atomic weights of the elements 1999 (IUPAC) technical report. Pure Appl. Chem. 73, 667–684 (2001)

  14. Picker, P., Tremblay, E., Jolicoeur, C.: A high-precision digital readout flow densimeter for liquids. J. Solution Chem. 3, 377–384 (1974)

    Article  CAS  Google Scholar 

  15. Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66–69 (1967)

    Article  CAS  Google Scholar 

  16. Weast, R.C. (Ed.), CRC Handbook of Chemistry and Physics, 48th ed., The Chemical Rubber Co., Cleveland, OH (1967)

    Google Scholar 

  17. Marriott, R.A., Hakin, A.W., Rard, J.A.: Apparent molar heat capacities and apparent molar volumes of Y2(SO4)3(aq), La2(SO4)3(aq), Pr2(SO4)3(aq), Nd2(SO4)3(aq), Eu2(SO4)3(aq), Dy2(SO4)3(aq), Ho2(SO4)3(aq), and Lu2(SO4)3(aq) at T = 298.15 K and p = 0.1 MPa. J. Chem. Thermodyn. 33, 643–687 (2001)

    Article  CAS  Google Scholar 

  18. Picker, P., Leduc, P.-A., Philip, P.R., Desnoyers, J.E.: Heat capacities of solutions by flow microcalorimetry. J. Chem. Thermodyn. 3, 631–642 (1971)

    Article  CAS  Google Scholar 

  19. Desnoyers, J.E., De Vissier, C., Perron, G., Picker, P.: Reexamination of the heat capacities obtained by flow microcalorimetry. Recommendation for the use of a chemical standard. J. Solution Chem. 5, 605–616 (1976)

    Article  CAS  Google Scholar 

  20. Ahluwalia, J.C., Ostiguy, C., Perron, G., Desnoyers, J.E.: Volumes and heat capacities of some amino acids in water at 25 C. Can. J. Chem. 55, 3364–3367 (1977)

    Article  CAS  Google Scholar 

  21. Chalikian, T.V., Saravazyan, A.P., Breslauer, K.J.: Partial molar volumes, expansibilities, and compressibilities of α,ω-aminocarboxylic acids in aqueous solutions between 18 and 55 C. J. Phys. Chem. 97, 13017–130126 (1993)

    Article  CAS  Google Scholar 

  22. Shahidi, F., Farrell, P.G.: Partial molar volumes of organic compounds in water. Part 4 – Aminocarboxylic acids. J. Chem. Soc. Faraday Trans. I 74, 858–868 (1978)

    Article  CAS  Google Scholar 

  23. Cohn, E.J., McMeekin, T.L., Edsall, J.T., Blanchard, M.H.: Studies of the physical chemistry of amino acids, peptides and related substances. I. The apparent molal volume and the electrostriction of the solvent. J. Am. Chem. Soc. 56, 784–794 (1934)

    Article  CAS  Google Scholar 

  24. Daniel, J., Cohn, E.J.: Studies in the physical chemistry of amino acids, peptides and related substances. VI. The densities and viscosities of aqueous solutions of amino acids. J. Am. Chem. Soc. 58, 415–423 (1936)

    Article  CAS  Google Scholar 

  25. Pepela, C.N., Dunlop, P.J.: Diffusion and density data for one composition of system H2O- Pr4NBr- β-alanine at 25 . J. Chem. Eng. Data 17, 207–208 (1972)

    Article  CAS  Google Scholar 

  26. Mishra, A.K., Ahluwalia, J.C.: Apparent molal volumes of amino acids, N-acetylamino acids and peptides in aqueous solutions. J. Phys. Chem. 88, 86–92 (1984)

    Article  CAS  Google Scholar 

  27. Edsall, J.T.: Proteins, Amino acids and peptides, Ed. Cohn, E.J. and Edsall, J.T., Hafner Pub. Co.: New York, Chap. 7 (1965)

  28. Wadi, R.K., Islam, M.N., Goyal, R.K.: Equilibrium and transport properties of amino acid solutions: Part 1. Temperature dependence of apparent molar volume in aqueous solutions between 288 and 308 K. Ind. J. Chem. 29A, 1055–1059 (1990)

    CAS  Google Scholar 

  29. Kharakoz, D.P.: Volumetric properties of protein and their analogs in diluted water solutions: 1. Partial volumes of amino acids at 15–55 C. Biophys. Chem. 34, 115–125 (1989)

    Article  CAS  Google Scholar 

  30. Cabani, S., Conti, G., Matteolli, E., Tiné, M.R.: Volumetric properties of amphionic molecules in water. Part 1. Volume changes in the formation of zwitterionic structures. J. Chem. Soc. Faraday Trans. I 77, 2377–2384 (1981)

    Article  CAS  Google Scholar 

  31. Wadi, R.K., Islam, M.N., Goyal, R.K.: Temperature dependence of apparent molar volumes and viscosity B-coefficients of amino acids in aqueous potassium thiocyanate solutions from 15 to 35 C. J. Solution Chem. 21, 163–170 (1992)

    Article  CAS  Google Scholar 

  32. Ogawa, T., Yasuda, M., Mizutani, K.: Volume and adiabatic compressibility of amino acids in urea-water mixtures. Bull. Chem. Soc. Jpn. 57, 662–666 (1984)

    Article  CAS  Google Scholar 

  33. Banipal, T.S., Kapoor, P.J.: Partial molal volumes and expansibilities of some amino acids in aqueous solutions. J. Indian Chem. Soc. 76, 431–437 (1999)

    CAS  Google Scholar 

  34. Clarke, R.G., Tremaine, P.R.: Amino acids under hydrothermal conditions: Apparent molar volumes of aqueous α-alanine, β-alanine, and proline at temperatures from 298 to 523 K and pressures up to 20.0 MPa. J. Phys. Chem. B 103, 5131–5144 (1999)

    Article  CAS  Google Scholar 

  35. Stimson, H.F.: Heat units and temperature scales for calorimetry. Am. J. Phys. 23, 614–622 (1955)

    Article  CAS  Google Scholar 

  36. DiPaola, G., Belleau, B.: Apparent molal heat capacities and volumes of amino acids in aqueous polyol solutions. Can. J. Chem. 56, 1827–1831 (1978)

    Article  CAS  Google Scholar 

  37. Kresheck, G.: Partial molal heat capacity at infinite dilution of amino acids in H2O and D2O solutions at 25. J. Chem. Phys. 52, 5966–???? (1970)

    Google Scholar 

  38. Gucker, F.T., Allen, T.W.: The densities and specific heats of aqueous solutions of d,l-α-alanine, β-alanine, and lactamide. J. Am. Chem. Soc. 64, 191–199 (1942)

    Article  CAS  Google Scholar 

  39. Clarke, R.G., Hnedkovsky, L., Tremaine, P.R., Majer, V.: Amino acids under hydrothermal conditions: Apparent molar heat capacities of aqueous α-alanine, β-alanine, glycine, and proline at temperatures From 298 to 500 K and pressures up to 30.0 MPa. J. Phys Chem. B 104, 11781–11793 (2000)

    Article  CAS  Google Scholar 

  40. Høiland, H.: Partial molal volumes, expansibilities, and compressibilities for aqueous solutions between 5 and 40 C. J. Solution Chem. 9, 857–865 (1980)

    Article  Google Scholar 

  41. Makhatadze, G.I., Privalov, P.L.: Heat capacity of alcohols in aqueous solutions in the temperature range from 5 to 125 C. J. Solution Chem. 18, 927–936, (1989)

    Article  CAS  Google Scholar 

  42. Häckel, M., Hinz, H.-J., Hedwig, G.R.: Additivity of the partial molar heat capacities of the amino acid side-chains of small peptides: Implications for unfolded proteins. Phys. Chem. Chem. Phys. 2, 5463–5468 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Hakin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakin, A.W., Liu, J.L. The Calorimetric and Volumetric Properties of Selected α-Amino Acids and α,ω-Amino Acids in Water at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J Solution Chem 35, 1157–1171 (2006). https://doi.org/10.1007/s10953-006-9046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9046-9

Keywords

Navigation