Skip to main content
Log in

Heat capacity of alcohols in aqueous solutions in the temperature range from 5 to 125°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Using a precise technique of scanning microcalorimetry the heat capacity differences between water and dilute aqueous solutions of ethanol, n-propanol, n-butanol and n-pentanol were measured from 5 to 125°C and the partial molar heat capacities of these substances in water were determined. It was found that the heat capacity increment for alcohol disolved in water is proportional to the number of the-CH 2 groups and decrease with a temperature increase. The heat capacity increment of hydration of non-polar groups is shown to be positive and large at room temperature and decreases in magnitude as the temperature increases. In contrast, the heat capacity increment of hydration of polar groups is negative at room tempreature and increases as the temperature increases. From the temperature dependence of the heat capacity increment one can assume that the water molecules solvated by the non-polar groups of the alcohols behave in a non-cooperative manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Gill, N. F. Nichols, and I. Wadsö,J. Chem. Thermodyn. 8, 446 (1976).

    Google Scholar 

  2. F. Franks and D. S. Reid,Water: A Comprehensive Treatise, F. Franks, ed. (Plenum Press, New York, 1973), p. 323.

    Google Scholar 

  3. N. Nichols, R. Scöld, C. Spink, J. Suurkuusk, and I. Wadsö,J. Chem. Thermodyn. 8, 1081 (1976).

    Google Scholar 

  4. D. Hallen, S.-O. Nillson, D. R. Rothschild, and I. Wadsö,J. Chem. Thermodyn. 18, 429 (1986).

    Google Scholar 

  5. G. Roux, G. Perron, J. E. Desnoyers,J. Solution Chem. 7, 639 (1978).

    Google Scholar 

  6. S. J. Gill, S. F. Dec, G. Olofsson, and I. Wadsö,J. Phys. Chem. 89, 3756 (1985).

    Google Scholar 

  7. P. L. Privalov and S. A. Potekhin,Methods in Enzymology 131, 4 (1986).

    Google Scholar 

  8. D. D. Perrin, W. L. F. Armarego, and D. R. Perrin,Purification of Laboratory Compounds, (Pergamon Press, Oxford, 1980).

    Google Scholar 

  9. R. W. Weast, ed.,Handbook of Chemistry and Physics (Chemical Rubber Co., Cleveland, OH, 1970).

    Google Scholar 

  10. M. E. Freadman and H. S. Scheraga,J. Phys. Chem. 69, 3795 (1965).

    Google Scholar 

  11. D. M. Alexander,J. Chem. Eng. Data 4, 252 (1959).

    Google Scholar 

  12. I. A. Vasiliev and V. M. Petrov,Thermodynamic Properties of Oxygen-Containing Organic Compounds (in Russian), Khimiya, Leningrad, 1984).

    Google Scholar 

  13. D. R. Stull, E. F. Westrum, Jr., and G. C. Sinke,The Chemical Thermodyanamics of Organic Compounds (Wiley, New York, 1969).

    Google Scholar 

  14. G. I. Makhatadze and P. L. Privalov,J. Chem. Thermodyn. 19, 467 (1988).

    Google Scholar 

  15. R. B. Hermann,J. Phys. Chem. 76, 2754 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makhatadze, G.I., Privalov, P.L. Heat capacity of alcohols in aqueous solutions in the temperature range from 5 to 125°C. J Solution Chem 18, 927–936 (1989). https://doi.org/10.1007/BF00647893

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647893

Key Words

Navigation