Skip to main content
Log in

Electrical Conductance Studies in Aqueous Solutions with Ascorbate Ions

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conductivity measurements in dilute aqueous solutions of L-ascorbic acid, sodium-L-ascorbate, magnesium-L-ascorbate, calcium-L-ascorbate and ferrous-L-ascorbate were performed in the (288.15 to 323.15) K temperature range. The limiting molar conductances of the ascorbic anion, λ(HAsc, T), and the dissociation constants of ascorbic acid, K(T), were derived by the use of the Debye-Hückel equation for the activity coefficients and the Onsager and Quint and Viallard conductivity equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carpeni, G.: Dissociation constants of ascorbic acid and its oxidation product with iodine. Compt. Rend. 203, 75–78 (1936)

    CAS  Google Scholar 

  2. Ball, E.G.: Studies on oxidation-reduction. XXIII. Ascorbic Acid, J. Biol. Chem. 118, 219–239 (1937)

    CAS  Google Scholar 

  3. Ghosh, J.C., Rakshit, P.C.: Dissociation constants of ascorbic acid. Biochem Z. 289, 395–396 (1937)

    CAS  Google Scholar 

  4. Kumler, W.D.: Dissociation constants of some enols related to l-ascorbic acid. J. Am. Chem. Soc. 60, 859–864 (1938)

    Article  CAS  Google Scholar 

  5. Ghosh, J.C., Rakshit, P.C.: Physicochemical properties of ascorbic and dehydroascorbic acids. Biochem. Z. 299, 394–405 (1938)

    CAS  Google Scholar 

  6. Tadokoro, T., Takasugi, N.: Chemical properties of ascorbic acid oxidase. X. Nippon Kagaku Kaishi 60, 1255–1257 (1939)

    CAS  Google Scholar 

  7. Morrison, J.F.: Activation of aconitase by ferrous ions and reducing agents. Biochem. J. 58, 685–692 (1954)

    CAS  Google Scholar 

  8. Gregorczyk, Z.: Determination of dissociation constants of the complexes formed by ascorbic acid with TiO++ or UO2++ ions. Acta Polon. Pharm. 15, 333–342 (1958)

    CAS  Google Scholar 

  9. Nebbia, G., Pizzoli, E.M.: Variations in optical activity of ascorbic and isoascorbic acids with changes in pH. Acta Vitaminologica 13, 269–273 (1959)

    CAS  Google Scholar 

  10. Sim, K.S.: Influence of ascorbic acid on the velocity constant of carboxyhemoglobin dissociation. Yakhak Hoechi 8, 62–68 (1964)

    CAS  Google Scholar 

  11. Skelton, G.S.: Papaya proteinases, II. Effect of ascorbic acid on proteolytic activity. Enzymologia 35, 275–278 (1968)

    CAS  Google Scholar 

  12. Taqui Khan, M.M., Martell, A.E.: The kinetics of the reaction of Iron(III) chelates catalyzed oxidation of ascorbic acid. III. Vanadyl ion catalyzed oxidation. J. Am. Chem. Soc. 90, 6011–6017 (1968)

    Article  Google Scholar 

  13. Taqui Khan, M.M., Martell, A.E.: Kinetics of metal ion and metal chelate catalyzed oxidation of ascorbic acid. IV. Uranyl ion catalyzed oxidation. J. Am. Chem. Soc. 91, 4668–4672 (1969)

    Article  CAS  Google Scholar 

  14. Harris, F.L., Toppen, D.L.: Kinetics and mechanism of reactions of water-soluble ferriporphyrins. 2. Reduction by ascorbic acid. Inorg. Chem. 17, 74–77 (1978)

    Article  CAS  Google Scholar 

  15. Macartney, D.H., McAuley, A.: The outer-sphere of ascorbic acid by the thioureapentacyanoferrate (III) ion. Can. J. Chem. 59, 132–137 (1981)

    Article  CAS  Google Scholar 

  16. Fridman, Ya. D., Alikeeva, S.V., Dolgasheva, N.V., Nemal’tseva, T.G.: Formation of mixed ligand metal complexes with ascorbic acid and amino acids. Zhurn. Neorg. Khim. 31, 1232–1237 (1986)

    CAS  Google Scholar 

  17. Kaulgud, M.V., Dole, H.G., Rao, K.S.M.: Apparent molal volume, apparent compressibility and transport properties of dilute aqueous solutions of ascorbic acid. Indian J. Chem. 16A, 955–958 (1978)

    CAS  Google Scholar 

  18. Shamim, M., Khoo, S.B.: Some physical properties of aqueous L-ascorbic acid solutions. Aust. J. Chem. 32, 2293–2295 (1979)

    Article  CAS  Google Scholar 

  19. Manzurola, E., Apelblat, A.: Solubility of ascorbic, 2-furancarboxylic, glutaric, pimelic, salicylic and o-phthalic acids in water from 279.15 to 342.15 K, and apparent molar volumes of ascorbic, glutaric and pimelic acids in water at 298.15 K. J. Chem. Thermodyn. 21, 1005–1008 (1989)

    Article  Google Scholar 

  20. Hakin, A.W., Mudrack, S.A.M., Beswik, C.L.: The volumetric and thermochemical properties of L-ascorbic acid in water at 288.15 K, 298.15 K and 308.15 K. Can. J. Chem. 71, 925–929 (1993)

    Article  CAS  Google Scholar 

  21. Apelblat, A.: Enthalpies of solution of malonic, glutaric, ascorbic, and DL-aspartic acids in water and of fumaric acid in 0.1 mol.dm-3s HCl. J. Chem. Thermodyn. 22, 253–256 (1990)

    Article  CAS  Google Scholar 

  22. Dallos, A., Hajós-Szikszay, é., Liszi, J.: Enthalpies of solution and crystallization of L-ascorbic acid in aqueous solution. J. Chem. Thermodyn. 30, 263–227 (1998)

    Article  CAS  Google Scholar 

  23. Gal, I.J.: Dissociation of L-ascorbic acid in aqueous solutions. Bull. The Boris Kidric Inst. of Nucl. Sci. 5, 71–77 (1955)

    CAS  Google Scholar 

  24. Maslowska, J., Owczarek, A.: Application of spectrophotometric method for the determination of successive acid dissociation constants of ascorbic acid h2 asc, zeszyty naukowe — chemia spozywcza. Tech. Univ. Lodz 32, 5–18 (1977)

    CAS  Google Scholar 

  25. Karrer, P., Schwarzenbach, G., Schopp, K.: Vitamin C, IV. Helv. Chem. Acta 16, 302–306 (1933)

    Article  CAS  Google Scholar 

  26. Seng, C.E., Shamim, M., Baki, M.: Conductance and cryoscopic measurements in aqueous l-ascorbic acid solutions. Pertanika 10, 311–313 (1987)

    CAS  Google Scholar 

  27. Tam, K.Y., Takács-Novák, K.: Multi-wavelength spectrophotometric determination of acid dissociation constants: A validation study. Anal. Chim. Acta 434, 157–167 (2001)

    Article  CAS  Google Scholar 

  28. Birch, T.W., Harris, L.J.: Titration curve and dissociation constants of vitamin C. Biochem. J. 27, 595–599 (1933)

    CAS  Google Scholar 

  29. Kumler, W.D., Daniels, T.C.: Titration curves and dissociation constants of L-ascorbic acid (vitamin C) and diethyl dihydroxymaleate. J. Am. Chem. Soc. 57, 1929–1930 (1935)

    Article  CAS  Google Scholar 

  30. Schauenstein, E., Perko, G.M.: Spectroscopic determination of the dissociation constants of o-aminophenol. Monatsh. Chem. 85, 580–507 (1954)

    Article  CAS  Google Scholar 

  31. Apelblat, A., Azoulay, D., Sahar, A.: Properties of aqueous thorium nitrate solutions. part 1—densities, viscosities, conductivities, pH, solubility and activities at freezing point. J. Chem. Soc. Faraday, I 69, 1618–1623 (1973)

    Article  CAS  Google Scholar 

  32. Orekhova, Z., Ben-Hamo, M., Manzurola, E., Apelblat, A.: Electrical conductance and volumetric studies in aqueous solutions of DL-pyroglutamic acid. J. Solution Chem. 34, 687–700 (2005)

    Article  CAS  Google Scholar 

  33. Orekhova, Z., Sambira, Y., Manzurola, E., Apelblat, A.: Electrical conductance and volumetric studies in aqueous solutions of nicotinic acid. J. Solution Chem. 34, 853–867 (2005)

    Article  CAS  Google Scholar 

  34. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold, New York (1958)

    Google Scholar 

  35. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1965)

    Google Scholar 

  36. Brummer, S.B., Hills, G.J.: Kinetic of ionic conductance. Trans. Faraday Soc. 57, 1816–1822 (1961)

    Article  CAS  Google Scholar 

  37. Kielland, J.: Individual activity coefficients of cations in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937)

    Article  CAS  Google Scholar 

  38. Harris, D.C.: Quantitative Chemical Analysis Freeman, San Francisco (1982)

  39. Quint, J.: Contribution a l’Etude de la conductibilite electrique des melanges d’electrolytes. PhD Thesis, University Clermont-Ferrand (1976)

  40. Quint, J., Viallard, A.: Electrical conductance of electrolyte mixtures of any type. J. Solution Chem. 7, 533–548 (1978)

    Article  CAS  Google Scholar 

  41. Apelblat, A., Barthel, J.: Conductance studies on aqueous citric acid. Z. Naturforsch. 46a, 131–140 (1978)

    Google Scholar 

  42. Tsurko, E.N., Neueder, R., Barthel, J., Apelblat, A.: Conductivity of phosphoric acid, sodium, potassium, and ammonium phosphates in dilute aqueous solutions from 278.15 K to 308.15 K. J. Solution Chem. 28, 973–999 (1999)

    Article  CAS  Google Scholar 

  43. Bešter-Rogač, M., Neueder, R., Barthel, J., Apelblat, A.: Conductivity studies on aqueous solutions of stereoisomers of tartaric acids and tartrates. part I. Alkali metal and ammonium tartrates. J. Solution Chem. 26, 127–134 (1997)

    Article  Google Scholar 

  44. Bešter-Rogač, M., Neueder, R., Barthel, J., Apelblat, A.: Conductivity studies on aqueous solutions of stereoisomers of tartaric acids and tartrates. Part II: D-, L-, and meso-tartaric acids. J. Solution Chem. 26, 299 (1997)

    Google Scholar 

  45. Bešter-Rogač, M., Tomšic, M., Barthel, J., Neueder, R., Apelblat, A.: Conductivity studies of dilute aqueous solutions of oxalic acid and neutral oxalates of sodium, potassium, cesium and ammonium from 5 to 35 ĈC. J. Solution Chem. 31, 1–18 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Apelblat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apelblat, A., Manzurola, E. & Orekhova, Z. Electrical Conductance Studies in Aqueous Solutions with Ascorbate Ions. J Solution Chem 35, 879–888 (2006). https://doi.org/10.1007/s10953-006-9031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9031-3

Keywords

Navigation