Skip to main content
Log in

Excess Molar Volumes, Viscosity Deviations and Isentropic Compressibility of Binary Mixtures Containing 1,3-Dioxolane and Monoalcohols at 303.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The excess molar volume (V E), viscosity deviations (Δη) and Gibbs excess energy of activation for viscous flow (G∗E) have been investigated from density (ρ) and viscosity (η) measurements of eight binary mixtures of 1,3-dioxolane with methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, and i-amyl alcohol over the entire range of mole fractions at 303.15 K. The viscosity data have been correlated with the Grunberg and Nissan equation. Furthermore, excess isentropic compressibilities (KSE) have been calculated from ultrasonic speed measurements of these binary mixtures at 303.15 K. The deviations have been fitted by a Redlich–Kister equation and the results are discussed in terms of molecular interactions and structural effects. The excess properties are found to be either negative or positive depending on the molecular interactions and the nature of the liquid mixtures. The systems studied exhibit very strong cross association through hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Roy, A. Choudhury, and A. Sinha, J. Teach. Res. Chem. 11, 12 (2004).

    Google Scholar 

  2. D. K. Hazra, M. N. Roy, and B. Das, Indian J. Chem. Techno. 1, 93 (1994).

    Google Scholar 

  3. M. N. Roy and A. Choudhury, J. Teach. Res. Chem. 1, 17 (2000).

    Google Scholar 

  4. M. N. Roy, B. B. Gurung, and A. Choudhury, J. Indian Chem. Soc. 81, 1 (2004).

    Google Scholar 

  5. S. L. Oswal and H. S. Desai, Fluid Phase Equilib. 161, 191 (1999).

    Article  CAS  Google Scholar 

  6. S. L. Oswal and H. S. Desai, Fluid Phase Equilib. 186, 81 (2001).

    Article  CAS  Google Scholar 

  7. C. Lafuente, B. Giner, A. Villares, I. Gascon, and P. Cea, Int. J. Thermophys. 25, 1735 (2004).

    Google Scholar 

  8. P. S. Nikam, L. N. Shirsat, and M. Hasan, J. Indian Chem. Soc. 77, 244 (2000).

    CAS  Google Scholar 

  9. E. Perez, M. Cardoso, A. M. Mainar, J. I. Pardo, and J. S. Urieta, J. Chem. Eng. Data 48, 1306 (2003).

    CAS  Google Scholar 

  10. J. N. Nayak, T. M. Aminabhavi, and M. I. Aralaguppi, J. Chem. Eng. Data 48, 1152 (2003).

    CAS  Google Scholar 

  11. G. Douheret, A. Pal, and M. I. Davis, J. Chem. Thermodyn. 22, 1 (1990).

    Google Scholar 

  12. S. L. Oswal and K. D. Prajapati, J. Chem. Eng. Data. 43, 367 (1998).

    Article  CAS  Google Scholar 

  13. J. R. Suindells and T. B. Godfray, J. Res. Natd. Bur. Stand. 48, 1 (1952).

    Google Scholar 

  14. M. N. Roy, A. Jha, and R. Dey, J. Chem. Eng. Data 46, 1247 (2001).

    Google Scholar 

  15. M. N. Roy, A. Jha, and A. Choudhury, J. Chem. Eng. Data 49, 291 (2004).

    Article  CAS  Google Scholar 

  16. S. L. Oswal and H. S. Desai, Fluid Phase Equilib. 149, 359(1998).

    CAS  Google Scholar 

  17. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd ed. (Pergamon, Great Britain, 1988).

    Google Scholar 

  18. J. Riddick, W. B. Bunger, and T. K Sakano, Organic Solvents: Physical Properties and Methods of Purification (Wiley, New York, 1986).

    Google Scholar 

  19. J. N. Gurtu and R. Kapoor, Adv. Exp. Chem. 1, 338, 346 (1987).

    Google Scholar 

  20. J. Timmermans, Physico Chemical Constants of Pure Organic Compounds (Elsevier, Amsterdam, 1950, 1; 1965, 2).

    Google Scholar 

  21. A. K. Covington and T. Dickinson, Physical Chemistry of Organic Solvent Systems (Plenum, New York, 1973).

    Google Scholar 

  22. A. W. Quin, D. F. Hoffmann, and P. Munk, J. Chem. Eng. Data 37, 55 (1992).

    Google Scholar 

  23. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Process (McGraw-Hill, New York, 1941, p. 514).

    Google Scholar 

  24. D. S. Gill, T. S. Kaur, H. Kaur, I. M. Joshi, and J. Singh, J. Chem. Soc., Faraday Trans. 89, 1737 (1993).

    CAS  Google Scholar 

  25. H. Artigas, C. Lafuente, M. C. Lopez, F. M. Royo, and J. S. Urieta, Zeit. Phys. Chem. 215, 933 (2001).

    CAS  Google Scholar 

  26. I. Gascon, S. Martin, P. Cea, M. C. Lopez, and F. M. Royo, J. Solution Chem. 31, 905 (2002).

    CAS  Google Scholar 

  27. F. Kimura, A. Treszczanowicz, C. Halpin, and G. Benson, J. Chem. Thermodyn. 15, 503 (1983).

    CAS  Google Scholar 

  28. L. Grunberg and A. H. Nissan, Nature 164, 799(1949).

    CAS  Google Scholar 

  29. O. Redlich and A. J. Kister, Ind. Eng. Chem. 40, 345 (1948).

    Google Scholar 

  30. D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).

    Article  Google Scholar 

  31. M. C. S. Subha and K. C. Rao, J. Phys. Chem. Liq. 18, 185 (1988).

    CAS  Google Scholar 

  32. A. Assarsson and F. R. Eirich, J. Phys. Chem. 72, 2710 (1968).

    Article  CAS  Google Scholar 

  33. E. A. Muller, J. Chem. Eng. Data 36, 214 (1991).

    Article  CAS  Google Scholar 

  34. P. Brocos, E. Calvo, A. Pineiro, R. Bravo, and A. Amigo, J. Chem. Eng. Data 44, 1341 (1999).

    CAS  Google Scholar 

  35. A. Amigo, R. Bravo, and M. Pintos, J. Chem. Eng. Data 38, 141 (1993).

    Article  CAS  Google Scholar 

  36. D. Papaioannou, M. Bridakis, and C. Panayiotou, J. Chem. Eng. Data 38, 616 (1993).

    Article  Google Scholar 

  37. A. Krishnaiah and P. R. Naidu, Acta Chem. Acad. Sci. Hung. 104, 295 (1986).

    Google Scholar 

  38. D. S. Gill and T. S. Cheema, Z. Phys. Chem (N.F). 134, 205 (1983).

    CAS  Google Scholar 

  39. Y. Marcus, Ion Solvation (Wiley, New York, 1985).

    Google Scholar 

  40. M. G. Prolongo, R. M. Masegosa, H. I. Fuentes, and A. Horta, J. Phys. Chem. 88, 2163 (1984).

    Article  CAS  Google Scholar 

  41. T. M. Reed and T. E. Taylor, J. Phys. Chem. 63, 58 (1959).

    CAS  Google Scholar 

  42. R. Meyer, M. Meyer, and J. Metzer, A. Peneloux. Chem. Phys. 62, 406 (1971).

    Google Scholar 

  43. A. J. Treszczanowicz, T. Treszczanowicz, T. Pawlowski, and T. K. Guttman, J. Solution Chem. 33, 1049 (2004).

    CAS  Google Scholar 

  44. R. J. Fort and W. R. Moore, Trans. Faraday Soc. 62, 1112 (1966).

    Article  CAS  Google Scholar 

  45. K. Ramamoorthy, J. Pure. Appl. Phys. 11, 554 (1973).

    CAS  Google Scholar 

  46. P. S. Nikam and M. Hasan, J. Chem. Eng. Data 33, 165 (1988).

    Article  CAS  Google Scholar 

  47. B. V. K. Naidu, K. C. Rao, and M. C. S. Subha, J. Indian Chem. Soc. 78, 259 (2001).

    CAS  Google Scholar 

  48. R. J. Fort and W. R. Moore, Trans. Faraday Soc. 61, 2102 (1965).

    Article  CAS  Google Scholar 

  49. T. Takizawa and K. Tamura, J. Therm. Anal. Calorim. 69, 1075 (2002).

    Google Scholar 

  50. L. Pikkarainen, J. Chem. Eng. Data 33, 299 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Nath Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, M.N., Sinha, A. & Sinha, B. Excess Molar Volumes, Viscosity Deviations and Isentropic Compressibility of Binary Mixtures Containing 1,3-Dioxolane and Monoalcohols at 303.15 K. J Solution Chem 34, 1311–1325 (2005). https://doi.org/10.1007/s10953-005-8022-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-8022-0

Keywords

Navigation