Since the results presented further on concern arbitrary but fixed sequences from the set \({{\mathcal {P}}}(a^{\circ })\), starting from this section we use simplified notation in which we omit superscripts related to permutations, e.g. we write a instead of \(a^{\pi }\). Similarly, we denote the full form of considered sequences, taking into account the properties of problem (P). For example, we write \(a=(a_{1},\ldots ,a_{n}) \in {{\mathcal {P}}}(a^{\circ })\) instead of \(a^{\pi }=(a_{\pi _0},a_{\pi _1},\ldots ,a_{\pi _n}) \in {{\mathcal {P}}}(a^{\circ })\), omitting \(a_{\pi _0}\), since it is fixed by Property 1.
Throughout the paper, we assume that any V-shaped sequence is composed of the left and the right branch. If one of the branches is empty, the V-shaped sequence becomes a non-increasing or non-decreasing sequence. A V-shaped sequence with non-empty branches may be composed of distinct or non-distinct elements. Since any pair of non-distinct elements of a sequence decreases the number of V-shaped sequences which we can generate from this sequence, we assume that V-shaped sequences are composed only of distinct elements. We also distinguish the case when the minimal element of a V-shaped sequence belongs either to the left or to the right branch of the sequence.
Perturbation formulae
Let \(a(a_r \leftrightarrow a_q)\) denote sequence \(a=(a_1,a_2,\ldots ,a_n)\) with elements \(a_r\) and \(a_q\) mutually exchanged, where \(1\le r < q \le n\). Observe that for given a and \(b=a(a_{r}\leftrightarrow a_{q})\), where r and q are indices defined above, and for \(j=0,1,\ldots ,n\) there holds the equality (Gawiejnowicz et al. 2006b):
$$\begin{aligned}&C_{j}(b)-C_{j}(a)\nonumber \\&\quad =\left\{ \begin{array}{ll} \left( \frac{a_{r}-a_{q}}{a_{q}}\right) \sum \limits _{i=r}^{q-1}\prod \limits _{k=i+1}^{j}a_{k} , &{} \quad 1\le r<q\le j\le n, \\ \left( \frac{a_{q}-a_{r}}{a_{r}}\right) \sum \limits _{i=0}^{r-1}\prod \limits _{k=i+1}^{j}a_{k}, &{}\quad 1\le r\le j<q\le n, \\ 0, &{}\quad 0\le j<r<q\le n. \end{array} \right. \end{aligned}$$
(2)
Summing formula (2) side by side for \(j=0,1,\ldots ,n\), we have
$$\begin{aligned}&\Vert C(b)\Vert _{1}-\Vert C(a)\Vert _{1} \nonumber \\&\quad = (a_{q}-a_{r}) \left( \sum \limits _{j=r}^{q-1}\frac{1}{a_{r}}\sum \limits _{i=0}^{r-1}(a_{i+1}\cdots a_{r}\cdots a_{j})\right. \nonumber \\&\qquad \left. -\sum \limits _{j=q}^{n}\frac{1}{a_{q}}\sum \limits _{i=r}^{q-1}(a_{i+1}\cdots a_{q}\cdots a_{j})\right) . \end{aligned}$$
(3)
By simplifying the second difference in Eq. (3), we obtain equality
$$\begin{aligned}&\Vert C(b)\Vert _{1}-\Vert C(a)\Vert _{1} \nonumber \\&\quad = (a_{q}-a_{r})\left[ \left( \sum \limits _{j=r}^{q-1}\prod \limits _{k=r+1}^{j}a_{k}\right) \left( \sum \limits _{i=0}^{r-1}\prod \limits _{k=i+1}^{r-1}a_{k}\right) \right. \nonumber \\&\qquad \left. -\left( \sum \limits _{i=r}^{q-1} \prod \limits _{k=i+1}^{q-1}a_{k}\right) \left( \sum \limits _{j=q}^{n}\prod \limits _{k=q+1}^{j}a_{k}\right) \right] . \end{aligned}$$
(4)
Mutually exchanging in Eq. (4) two consecutive elements with indices r and \(q=r+1\), where \(1 \le r \le n-1\), we obtain equality
$$\begin{aligned}&\Vert C(b)\Vert _{1}-\Vert C(a)\Vert _{1}\nonumber \\&\quad =(a_{r+1}-a_{r}) \left( \sum _{j=0}^{r-1}\prod _{k=j+1}^{r-1}a_{k}-\sum _{i=r+1}^{n} \prod _{k=r+2}^{i}a_{k}\right) . \end{aligned}$$
(5)
Cyclic shifts
Given sequence \(a=(a_{1},\ldots ,a_{r},\ldots ,a_{q},\ldots ,a_{n}),\) where \(1\le r<q\le n,\) let \(a(a_r\leftarrow a_q)\) denote sequence a in which element \(a_q\) has been moved immediately before element \(a_r\). Similarly, let \(a(a_r\rightarrow a_q)\) denote sequence a in which element \(a_r\) has been moved immediately after element \(a_q\), i.e. let
$$\begin{aligned} a(a_r\leftarrow a_q){=}(a_{1}{,}\ldots {,}a_{r{-}1}{,}a_{q}{,}a_{r}{,}\ldots {,}a_{q{-}1}{,}a_{q{+}1},\ldots ,a_{n})\nonumber \\ \end{aligned}$$
(6)
and
$$\begin{aligned} a(a_r \rightarrow a_q){=}(a_{1}{,}{\ldots }{,}a_{r{-}1}{,}a_{r{+}1}{,}{\ldots }{,}a_{q}{,}a_{r}{,}a_{q{+}1}{,}\ldots {,}a_{n}){.}\nonumber \\ \end{aligned}$$
(7)
We call \(a(a_r\leftarrow a_q)\) and \(a(a_r \rightarrow a_q)\) the cyclic shifts of sequence a.
Notice that given a and \(1\le r<q\le n,\) we can obtain the cyclic shifts \(a(a_r \leftarrow a_q)\) and \(a(a_r \rightarrow a_q)\) by consecutive transpositions of suitable pairs of elements in a. Namely, if we define \({\overline{a}}^{\,0}=a\), then
$$\begin{aligned} \begin{array}{l c l} {\overline{a}}^{1} &{} = &{} {\overline{a}}^{\,0}({\overline{a}}_{q}^{\,0}\leftrightarrow {\overline{a}}_{q-1}^{\,0}), \\ {\overline{a}}^{2} &{} = &{} {\overline{a}}^{1}({\overline{a}}_{q-1}^{1}\leftrightarrow {\overline{a}}_{q-2}^{1}), \\ \ldots &{} &{} \ldots , \\ {\overline{a}}^{\,q-r} &{} = &{} {\overline{a}}^{\,q-r-1}({\overline{a}}_{r}^{\,q-r-1}\leftrightarrow {\overline{a}}_{r+1}^{\,q-r-1}) \end{array} \end{aligned}$$
(8)
or, in explicit form,
$$\begin{aligned} \begin{array}{l c l} {\overline{a}}^{\,0}&{} {=} &{} (a_{1}{,}{\ldots }{,}a_{r}{,}a_{r+1},a_{r+2},\ldots ,a_{q-1},\boxed {a_{q}},a_{q+1},\ldots ,a_{n}), \\ {\overline{a}}^{1}&{} = &{} (a_{1},\ldots ,a_{r},a_{r+1},a_{r+2},\ldots ,\boxed {a_{q}},a_{q-1},a_{q+1},\ldots ,a_{n}), \\ \ldots &{} \ldots &{} \ldots , \\ {\overline{a}}^{\,q-r-1}&{} = &{} (a_{1},\ldots ,a_{r},\boxed {a_{q}},a_{r+1},\ldots ,a_{q-1},a_{q+1},\ldots ,a_{n}), \\ {\overline{a}}^{\,q-r}&{} = &{} (a_{1},\ldots ,\boxed {a_{q}},a_{r},a_{r+1},\ldots ,a_{q-1},a_{q+1},\ldots ,a_{n}),\\ \end{array}\nonumber \\ \end{aligned}$$
(9)
where box indicates the element \(a_q\) which is shifted in sequence a. In other words, \({\overline{a}}^{1}\) is the result of transposition of the \({(q-1)}\)th and qth components of sequence \({\overline{a}}^{\,0}=a\), \({\overline{a}}^{2}\) is the result of transposition of the \({(q-2)}\)th and \({(q-1)}\)th components of \({\overline{a}}^{\,0}=a\), etc. Finally, \({\overline{a}}^{\,q - r}\) is the result of transposition of the rth and \({(r+1)}\)th components of \({\overline{a}}^{\,q-r-1}.\) Therefore, we can identify \(a(a_r\leftarrow a_q)\) with \({\overline{a}}^{\,q - r}\).
Similarly, defining \({\underline{a}}^{0}=a\), applying in \({\underline{a}}^{0}\) the transposition of elements \({\underline{a}}^{0}_{\,r}\) and \({\underline{a}}^{0}_{\,r+1}\) from the left to right and proceeding further as previously, we have
$$\begin{aligned} \begin{array}{l c l} {\underline{a}}^{1} &{} = &{} {\underline{a}}^{0}({\underline{a}}_{\,r+1}^{0}\leftrightarrow {\underline{a}}_{\,r}^{0}), \\ {\underline{a}}^{2} &{} = &{} {\underline{a}}^{1}({\underline{a}}_{\,r+2}^{1}\leftrightarrow {\underline{a}}_{\,r+1}^{1}), \\ \ldots &{} &{} \ldots , \\ {\underline{a}}^{q-r} &{} = &{} {\underline{a}}^{q-r-1}({\underline{a}}_{\,q}^{q-r-1}\leftrightarrow {\underline{a}}_{\,q-1}^{q-r-1}) \end{array}\nonumber \\ \end{aligned}$$
(10)
or, in explicit form,
$$\begin{aligned} \begin{array}{l c l} {\underline{a}}^{\,0} &{} = &{} (a_{1},\ldots ,\boxed {a_{r}},a_{r+1},a_{r+2},\ldots ,a_{q-1},a_{q}, a_{q+1},\ldots ,a_{n}), \\ {\underline{a}}^{1} &{} = &{} (a_{1},\ldots ,a_{r+1},\boxed {a_{r}},a_{r+2},\ldots ,a_{q-1}, a_{q},a_{q+1},\ldots ,a_{n}), \\ \ldots &{} \ldots &{} \ldots , \\ {\underline{a}}^{\,q-r-1} &{} = &{} (a_{1},\ldots ,a_{r+1},a_{r+2},a_{r+3},\ldots ,\boxed {a_{r}},a_{q},a_{q+1},\ldots ,a_{n}), \\ {\underline{a}}^{\,q-r} &{} = &{} (a_{1},\ldots ,a_{r+1},a_{r+2},a_{r+3},\ldots ,a_{q},\boxed {a_{r}},a_{q+1},\ldots ,a_{n}). \end{array}\nonumber \\ \end{aligned}$$
(11)
Therefore, \(a(a_r \rightarrow a_q)\) can be identified with \({\underline{a}}^{q-r}.\)
Hence, in view of formulae (8)–(11), we use symbols \(a(a_r\leftarrow a_q)\) and \(a(a_r \rightarrow a_q)\) interchangeably with symbols \({\overline{a}}^{\,q - r}\) and \({\underline{a}}^{q-r}\), respectively.
Since below we consider V-shaped sequences in which the positions of some elements are distinguished, now we introduce two new terms.
Definition 2
Let \(a=(a_{1},\ldots ,a_{m},\ldots ,a_{n})\in {{\mathcal {P}}} (a^{\circ })\) be a V-shaped sequence such that \(a_{m}\) is the minimal element in a and \(1<m<n\). Index r is said to be m-conjugated to index q, if \(m < q \le n\), \(1\le r<m\) and \(a(a_r\leftarrow a_q)\) is V-shaped. Similarly, index q is said to be m-conjugated to index r, if \(1 \le r < m\), \(m < q \le n\) and \(a(a_r\rightarrow a_q)\) is V-shaped.
From Definition 2, it follows that cyclic shifts of a V-shaped sequence a lead to sequences \(a(a_r\leftarrow a_q)\) and \(a(a_r\rightarrow a_q)\) which are V-shaped as well, whenever r and q are m-conjugated to each other. Notice also that indices r and q need not be mutually m-conjugated.
The behaviour of criterion \(\Vert \cdot \Vert _1\) for such cyclic shifts can be determined by means of some formulae. Before we present the formulae, we introduce two functions of sequence a.
Definition 3
Let
$$\begin{aligned} \Delta _{k,q}(a)= & {} \sum _{i=1}^{q-k-1}\prod _{j=i}^{q-k-1}a_{j}-\sum _{i=q-k+1}^{q-1} \prod _{j=q-k+1}^{i}a_{j}\\&-\frac{1}{a_{q}}\sum _{i=q+1}^{n} \prod _{j=q-k+1}^{i}a_{j} \end{aligned}$$
and
$$\begin{aligned} \nabla _{k,r}(a)= & {} \frac{1}{a_{r}}\sum _{i=1}^{r-1}\prod _{j=i}^{r+k-1}a_{j}+ \sum _{i=r+1}^{r+k-1}\prod _{j=i}^{r+k-1}a_{j}\\&-\sum _{i=r+k+1}^{n} \prod _{j=r+k+1}^{i}a_{j}, \end{aligned}$$
where \(1\le r<q\le n\) and \(k=1,2,\ldots ,q-r.\)
The next result shows that for fixed indices r and q the sequences of functions \(\Delta _{k,q}(a)\) and \(\nabla _{k,r}(a)\) are monotonic. We omit the proof of the result, since it follows directly from Definition 3.
Lemma 1
Let r and q be fixed, \(1\le r<q\le n\). Then, there hold inequalities
$$\begin{aligned} \Delta _{1,q}(a)\ge \Delta _{2,q}(a)\ge \cdot \cdot \cdot \ge \Delta _{q-r,q}(a) \end{aligned}$$
and
$$\begin{aligned} \nabla _{1,r}(a)\le \nabla _{2,r}(a)\le \cdot \cdot \cdot \le \nabla _{q-r,r}(a). \end{aligned}$$
The last result in this section concerns differences \(\Vert C({\overline{a}}^{q{-}r})\Vert _{1}-\Vert C(a)\Vert _{1}\) and \(\Vert C({\underline{a}}^{q-r})\Vert _{1}-\Vert C(a)\Vert _{1}\).
Lemma 2
If \(a=(a_{1},\ldots ,a_{r},\ldots ,a_{q},\ldots ,a_{n})\) with \(1\le r<q\le n\), then
$$\begin{aligned} \Vert C({\overline{a}}^{q-r})\Vert _{1}-\Vert C(a)\Vert _{1}= & {} \sum _{k=1}^{q-r}(a_{q}-a_{q-k})\Delta _{k,q}(a) \end{aligned}$$
(12)
and
$$\begin{aligned} \Vert C({\underline{a}}^{q-r})\Vert _{1}-\Vert C(a)\Vert _{1}= & {} \sum _{k=1}^{q-r}(a_{r+k}-a_{r})\nabla _{k,r}(a). \end{aligned}$$
(13)
Proof
To prove formulae (12) and (13), we apply consecutive pairwise transpositions. Let \(1\le r<q\le n.\)
In order to prove (12), we proceed as follows. Let
$$\begin{aligned} {\overline{a}}^{\,s}= & {} ({\overline{a}}_{1}^{s},\ldots ,{\overline{a}}_{r-1}^{s}, {\overline{a}}_{r}^{s},{\overline{a}}_{r+1}^{s}, {\overline{a}}_{r+2}^{s},\\&\ldots ,{\overline{a}}_{q-2}^{s},{\overline{a}}_{q-1}^{s}, {\overline{a}}_{q}^{s}, {\overline{a}}_{q+1}^{s},\ldots ,{\overline{a}}_{n}^{s}) \end{aligned}$$
for \(s=0,1,2,\ldots ,q-r\). First, applying Eq. (5), we calculate for \(s=1,2,\ldots ,q-r\) differences \(\delta _{s}-\delta _{s-1}\), where \(\delta _{s}=\Vert C({\overline{a}}^{s})\Vert _{1}\). Then,
$$\begin{aligned} \begin{array}{lll} &{}&{}\delta _{1}-\delta _{0} = ({\overline{a}}_{q}^{\,0}-{\overline{a}}_{q-1}^{\,0}) \left( \sum \limits _{j=0}^{q-2}\prod \limits _{k=j+1}^{q-2}{\overline{a}}_{k}^{\,0}- \sum \limits _{i=q}^{n}\prod \limits _{k=q+1}^{i}{\overline{a}}_{k}^{\,0}\right) , \\ &{}&{}\delta _{2}-\delta _{1} = ({\overline{a}}_{q-1}^{1}-{\overline{a}}_{q-2}^{1}) \left( \sum \limits _{j=0}^{q-3}\prod \limits _{k=j+1}^{q-3}{\overline{a}}_{k}^{1}- \sum \limits _{i=q-1}^{n}\prod \limits _{k=q}^{i}{\overline{a}}_{k}^{1}\right) , \\ &{}&{}\ldots \ldots \ldots , \\ &{}&{}\delta _{q-r}-\delta _{q-r-1} = ({\overline{a}}_{r+1}^{\,q-r-1}-{\overline{a}}_{r}^{\,q-r-1}) \left( \sum \limits _{j=0}^{r-1}\prod \limits _{k=j+1}^{r-1}{\overline{a}}_{k}^{\,q-r-1}\right. \nonumber \\ &{}&{}-\left. \sum \limits _{i=r+1}^{n}\prod \limits _{k=r+2}^{i}{\overline{a}}_{k}^{\,q-r-1}\right) . \\ \end{array} \end{aligned}$$
Next, we simplify the right sides of these equalities. Simplifying the right side of the equality for difference \(\delta _1-\delta _0\), by (9) we have \({\overline{a}}_{k}^{\,0} = a_k\) for \(k = 1,2,\cdots ,n\). Hence,
$$\begin{aligned} {\overline{a}}_{q}^{\,0}-{\overline{a}}_{q-1}^{\,0} = a_q - a_{q-1} \end{aligned}$$
and, by Definition 3,
$$\begin{aligned} \sum \limits _{j=0}^{q-2}\prod \limits _{k=j+1}^{q-2}{\overline{a}}_{k}^{\,0} -\sum \limits _{i=q}^{n} \prod \limits _{k=q+1}^{i}{\overline{a}}_{k}^{\,0} = \Delta _{1,q}({\overline{a}}^{\,0}). \end{aligned}$$
Similarly, simplifying the right side of the equality for difference \(\delta _2-\delta _1\), by (9) we have \({\overline{a}}_{q-1}^{1} = a_q\), \({\overline{a}}_{q-2}^{1} = a_{q-2}\) and \({\overline{a}}_{k}^{1} = a_k \) for \(k = 1,2,\cdots ,q-2,\) \(q+1,\cdots , n.\) Hence,
$$\begin{aligned} {\overline{a}}_{q-1}^{1}-{\overline{a}}_{q-2}^{1} = a_q - a_{q-2} \end{aligned}$$
and, by Definition 3,
$$\begin{aligned} \sum \limits _{j=0}^{q-3}\prod \limits _{k=j+1}^{q-3}{\overline{a}}_{k}^{1}- \sum \limits _{i=q-1}^{n}\prod \limits _{k=q}^{i}{\overline{a}}_{k}^{1} = \Delta _{2,q}({\overline{a}}^{\,1}). \end{aligned}$$
In a similar way, we proceed for \(s=3,4,\ldots ,q-r-1\). Finally, simplifying the right side of the equality for difference \(\delta _{q-r}-\delta _{q-r-1}\), we have, by (9), \({\overline{a}}_{r+1}^{\,q-r-1} = a_q\) and \({\overline{a}}_{r}^{\,q-r-1} = a_r\), whereas \({\overline{a}}_{k}^{\,q-r-1} = a_k\) for \(k = 1,2,\cdots ,r,\) \({\overline{a}}_{k}^{\,q-r-1} = a_{k-1}\) for \(k = r+2,\cdots ,q-1\) and \({\overline{a}}_{k}^{\,q-r-1} = a_{k}\) for \(k = q+1,\cdots ,n.\) Hence,
$$\begin{aligned} {\overline{a}}_{r+1}^{\,q-r-1} - {\overline{a}}_{r}^{\,q-r-1} = a_q - a_r \end{aligned}$$
and, by Definition 3,
$$\begin{aligned} \sum \limits _{j=0}^{r-1}\prod \limits _{k=j+1}^{r-1}{\overline{a}}_{k}^{\,q-r-1}{-} \sum \limits _{i=r+1}^{n}\prod \limits _{k=r+2}^{i}{\overline{a}}_{k}^{\,q-r-1} {=} \Delta _{q-r,q}({\overline{a}}^{\,q-r-1}). \end{aligned}$$
Finally, in view of explicit forms of \({\overline{a}}_{k}^{s}\) and by the above equalities, we get that differences \(\delta _{s}-\delta _{s-1}\), where \(s=1,2,\ldots ,q-r\), take the following forms:
$$\begin{aligned} \begin{array}{lll} \delta _{1}-\delta _{0} &{} = &{} (a_q - a_{q-1}) \Delta _{1,q}(a), \\ \delta _{2}-\delta _{1} &{} = &{} (a_q - a_{q-2}) \Delta _{2,q}(a), \\ \ldots &{} \ldots &{} \ldots , \\ \delta _{q-r}-\delta _{q-r-1} &{} = &{} (a_q - a_{r}) \Delta _{q-r,q}(a). \end{array} \end{aligned}$$
Summing the above formulae side by side, we obtain formula (12).
Formula (13) can be proved in a similar manner: we start with
$$\begin{aligned} {\underline{a}}^{\,s}= & {} ({\underline{a}}_{\,1}^{s},\ldots ,{\underline{a}}_{\,r-1}^{s}, {\underline{a}}_{\,r}^{s},{\underline{a}}_{\,r+1}^{s}, {\underline{a}}_{\,r+2}^{s},\\&\ldots ,{\underline{a}}_{\,q-2}^{s}, {\underline{a}}_{\,q-1}^{s},{\underline{a}}_{\,q}^{s}, {\underline{a}}_{\,q+1}^{s},\ldots ,{\underline{a}}_{\,n}^{s}) \end{aligned}$$
for \(s=0,1,2,\ldots ,q-r\) and proceed as previously. \(\square \)