Bada G, Horváth F, Fejes I, Gerner P (1999) Review of the present-day geodynamics of the Pannonian basin: progress and problems. J Geodyn 27:501–527
Article
Google Scholar
Bondár I, McLaughlin K (2009a) A new ground truth data set for seismic studies. Seismol Res Lett 80(3):465–472
Article
Google Scholar
Bondár I, McLaughlin K (2009b) Seismic location bias and uncertainty in the presence of correlated and non-Gaussian travel-time errors. Bull Seismol Soc Am 99(1):172–193
Article
Google Scholar
Bondár I, Storchak D (2011) Improved location procedures at the International Seismological Centre. Geophys J Int 186(3):1220–1244
Article
Google Scholar
Bondár I, Myers SC, Engdahl ER, Bergman EA (2004) Epicenter accuracy based on seismic network criteria. Geophys J Int 156:483–496. https://doi.org/10.1111/j.1365-246X.2004.02070.x
Article
Google Scholar
Bondár I, Myers SC, Engdahl ER (2014) Earthquake location. In: Beer M, Kougioumtzoglou IA, Patelli E, Au ISK (eds) Springer encyclopedia of earthquake engineering. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-642-36197-5_184-1
Chapter
Google Scholar
Bondár I, Mónus P, Czanik C, Kiszely M, Gráczer Z, Wéber Z, the AlpArrayWorking Group (2018) Relocation of seismicity in the Pannonian Basin using a global 3D velocity model. Seismol Res Lett. https://doi.org/10.1785/0220180143
Czecze B, Süle B, Bondár I (2018) A 2013. évi Heves megyei földrengéssorozat helymeghatározása többeseményes algoritmussal (Multiple event relocation of the 22 April 2013, ML = 4.8 Tenk (Hungary) earthquake aftershocks). Magyar Geofizika 58:162–174
Google Scholar
de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454
Article
Google Scholar
Fodor L, Bada G, Csillag G, Horváth E, Ruszkiczay-Rüdiger Z, Palotás K, Síkhegyi F, Timár G, Cloetingh S, Horváth F (2005) An outline of neotectonic structures and morphotectonics of the western and central Pannonian basin. Tectonophysics. 410:15–41
Article
Google Scholar
Gerner P, Bada G, Dövényi P, Müller B, Oncescu MC, Cloetingh S, Horváth F (1999) Recent tectonic stress and crustal deformation in and around the Pannonian basin: data and models. In: Durand B, Jolivet L, Horváth F, Séranne MS (eds) The Mediterranean basins: tertiary extension within the Alpine orogen, vol 156. Geological Society of London Special Publications, pp 269–294
Gráczer Z, Wéber Z (2012) One-dimensional P-wave velocity model for the territory of Hungary from local earthquake data. Acta Geodaetica et Geophysica Hungarica 47(3):344–357
Article
Google Scholar
Gráczer Z, Bondár I, Czanik CS, Czifra T, Győi E, Kiszely M, Mónus P, Süle B, Szanyi GY, Szűcs E, Tóth L, Varga P, Wesztergom V, Wéber Z (eds) (2017) Hungarian National Seismological Bulletin 2016, Kövesligethy Radó seismological observatory. MTA CSFK GGI, Budapest, p 353
Google Scholar
Gráczer Z, Szanyi G, Bondár I, Czanik CS, Czifra T, Győri E, Hetényi GY, Kovács I, Molinari B, Süle E, Szucs V, Wesztergom Z, Wéber and AlpArray Working Group (2018) AlpArray in Hungary: temporary and permanent seismological networks in the transition zone between the Eastern Alps and the Pannonian basin. Acta Geodyn Geophys. https://doi.org/10.1007/s40328-018-0213-4
Article
Google Scholar
Hetényi G, Molinari I, Clinton J, Bokelmann G, Bondár I, Crawford WC, Dessa J-X, Doubre C, Friederich W, Fuchs F, Giardini D, Gráczer Z, Handy MR, Herak M, Jia Y, Kissling E, Kopp H, Korn M, Margheriti L, Meier T, Mucciarelli M, Paul A, Pesaresi D, Piromallo C, Plenefisch T, Plomerová J, Ritter J, Rümpker G, Sipka V, Spallarossa D, Thomas C, Tilmann F, Wassermann J, Weber M, Wéber Z, Wesztergom V, Zivcic M, AlpArray Seismic Network Team, AlpArray OBS Cruise Crew, AlpArray Working Group (2018) The AlpArray seismic network: a large-scale European experiment to image the Alpine Orogen. Surv Geophys 39:1009–1033. https://doi.org/10.1007/s10712-018-9472-4
Article
Google Scholar
Kværna T (1996) Time shifts of phase onsets caused by SNR variations. NORSAR Sci Rep 2-95/96:143–152
Google Scholar
Langfelder P, Zhang B, Horvath S (2008) Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut Package for R. Bioinformatics 2008 24(5):719–720
Article
Google Scholar
Lenkey L, Dövényi P, Horváth F, Cloetingh S (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. EGU Stephan Mueller Spec Publ Ser 3:29–40
Article
Google Scholar
Lomax AJ (1991) User manual for SeisGram. In: Lee WHK (ed) Digital seismogram analysis and waveform inversion, IASPEI software library volume 3. Seismological Society of America
Myers SC, Begnaud ML, Ballard S, Pasyanos ME, Phillips WS, Ramirez AL, Antolik MS, Hutchenson KD, Dwyer JJ, Rowe CA, Wagner GS (2010) A crust and upper-mantle model for Eurasia and North Africa for Pn travel-time calculation. Bull Seismol Soc Am 100:640–656
Article
Google Scholar
Paige CC, Saunders MA (1982) LSQR: sparse linear equations and least squares problems. ACM Trans Math Softw 8/2:195–209
Article
Google Scholar
Pavlis GL (1986) Appraising earthquake hypocenter location errors: a complete, practical approach for single-event locations. Bull Seismol Soc Am 76:1699–1717
Google Scholar
QGIS Development Team (2018) QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
Sibson R (1973) SLINK: an optimally efficient algorithm for the single-link cluster method. Comput J 16:30–34
Article
Google Scholar
Tóth L, Mónus P, Zsíros T, Bondár I, Bus Z, Kosztyu Z (1996) Hungarian earthquake bulletin 1995, GeoRisk, Budapest, HU ISSN 1219-963X. https://doi.org/10.7914/SN/HM.
Waldhauser F (2001) hypoDD--A program to compute double-difference hypocenter locations. US Geol Surv Open File Report, 01 113
Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bull Seismol Soc Am 90(6):1353–1368
Article
Google Scholar
Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72:445–446
Article
Google Scholar