Skip to main content

Advertisement

Log in

Measurements of translation, rotation and strain: new approaches to seismic processing and inversion

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We propose a novel approach to seismic tomography based on the joint processing of translation, strain and rotation measurements. Our concept is based on the apparent S and P velocities, defined as the ratios of displacement velocity and rotation amplitude, and displacement velocity and divergence amplitude, respectively. To assess the capability of these new observables to constrain various aspects of 3D Earth structure, we study their corresponding finite-frequency kernels, computed with a combination of spectral-element simulations and adjoint techniques. The principal conclusion is that both the apparent S and P velocities are generally sensitive only to small-scale near-receiver structure, irrespective of the type of seismic wave considered. It follows that knowledge of deeper Earth structure would not be required in tomographic inversions for local structure based on the new observables. In a synthetic finite-perturbation test, we confirm the ability of the apparent S and P velocities to directly detect both the location and the sign of shallow lateral velocity variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agnew DC and Wyatt FK (2003) Long-base laser strainmeters: a review. Scripps Institution of Oceanography. http://escholarship.org/uc/item/21z72167. Accessed 17 May 2011

  • Bernauer M, Fichtner A, Igel H (2009) Inferring earth structure from combined measurements of rotational and translational ground motions. Geophysics 74:WCD41–WCD47. doi:10.1190/1.3211110

    Article  Google Scholar 

  • Blum J, Igel H, Zumberge M (2010) Observations of Rayleigh-wave phase velocity and coseismic deformation using an optical fiber, interferometric vertical strainmeter at the SAFOD borehole, California. Bull Seismol Soc Am 100:1879–1891. doi:10.1785/0120090333

    Article  Google Scholar 

  • Brokešová J, Málek J (2010) New portable sensor system for rotational seismic motion measurements. Rev Sci Instrum 81:084501. doi:10.1063/1.3463271

    Article  Google Scholar 

  • Cochard A, Igel H, Schuberth B, Suryanto W, Velikoseltsev A, Schreiber U, Wassermann J, Scherbaum F, Vollmer D (2006) Rotational motions in seismology: theory, observation, simulation. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg, pp 391–411

    Chapter  Google Scholar 

  • Dahlen FA, Baig AM (2002) Fréchet kernels for body-wave amplitudes. Geophys J Int 150:440–466. doi:10.1046/j.1365-246X.2002.01718.x

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Int 25:297–356. doi:10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  • Ferreira AMG, Igel H (2009) Rotational motions of seismic surface waves in a laterally heterogeneous Earth. Bull Seismol Soc Am 99:1429–1436. doi:10.1785/0120080149

    Article  Google Scholar 

  • Fichtner A (2011) Full seismic waveform modelling and inversion. Springer, Heidelberg

    Book  Google Scholar 

  • Fichtner A, Igel H (2009) Sensitivity densities for rotational ground-motion measurements. Bull Seismol Soc Am 99:1302–1314. doi:10.1785/0120080064

    Article  Google Scholar 

  • Fichtner A, Trampert J (2011) Resolution analysis in full waveform inversion. Geophys J Int 187:1604–1624

    Article  Google Scholar 

  • Fichtner A, Bunge H-P, Igel H (2006) The adjoint method in seismology: I-theory. Phys Earth Planet Int 157:86–104. doi:10.1016/j.pepi.2006.03.016

    Article  Google Scholar 

  • Fichtner A, Igel H, Bunge H-P, Kennett BLN (2009) Simulation and inversion of seismic wave propagation on continental scales based on a spectral-element method. J Numer Anal, Ind and Appl Math 4:11–22

    Google Scholar 

  • Gomberg J, Agnew D (1996) The accuracy of seismic estimates of dynamic strains: an evaluation using strainmeter and seismometer data from Piñon flat observatory, California. Bull Seismol Soc Am 86:212–220

    Google Scholar 

  • Igel H, Schreiber U, Flaws A, Schuberth B, Velikoseltsev A, Cochard A (2005) Rotational motions induced by the M 8.1 Tokachi-oki earthquake, September 25, 2003. Geophys Res Lett. doi:10.1029/2004GL022336

    Google Scholar 

  • Igel H, Cochard A, Wassermann J, Flaws A, Schreiber U, Velikoseltsev A, Dinh NP (2007) Broad-band observations of earthquake-induced rotational ground motions. Geophys J Int 168:182–197. doi:10.1111/j.1365-246X.2006.03146.x

    Article  Google Scholar 

  • Liu C-C, Huang B-S, Lee WHK, Lin C-J (2009) Observing rotational and translational ground motions at the HGSD station in Taiwan from 2007 to 2008. Bull Seismol Soc Am 99:1228–1236. doi:10.1785/0120080156

    Article  Google Scholar 

  • Mikumo T, Aki K (1964) Determination of local phase velocity by intercomparison of seismograms from strain and pendulum instruments. J Geophys Res 69:721–731

    Article  Google Scholar 

  • Nigbor RL, Evans JR, Hutt CR (2009) Laboratory and field testing of commercial rotational seismometers. Bull Seismol Soc Am 99:1215–1227. doi:10.1785/10.1785/0120080247

    Article  Google Scholar 

  • Pham ND, Igel H, Wassermann J, Käser M, de la Puente J, Schreiber U (2009) Observations and modeling of rotational signals in the P coda: constraints on crustal scattering. Bull Seismol Soc Am 99:1315–1332. doi:10.1785/0120080101

    Article  Google Scholar 

  • Pillet R, Deschamps A, Legrand D, Virieux J, Béthoux N, Yates B (2009) Interpretation of broadband ocean-bottom seismometer horizontal data seismic background noise. Bull Seismol Soc Am 99:1333–1342. doi:10.1785/0120080123

    Article  Google Scholar 

  • Sacks IS, Snoke JA, Evans R, King G, Beavan J (1976) Single-site phase velocity measurement. Geophys J R Astron Soc 46:253–258. doi:10.1111/j.1365-246X.1976.tb04157.x

    Article  Google Scholar 

  • Schreiber U, Hautmann JN, Velikoseltsev A, Wassermann J, Igel H, Otero J, Vernon F, Wells J-PR (2009) Ring laser measurements of ground rotations for seismology. Bull Seismol Soc Am 99:1190–1198. doi:10.1785/0120080171

    Article  Google Scholar 

  • Stupazzini M, de la Puente J, Smerzini C, Käser M, Igel H, Castellani A (2009) Study of rotational ground motion in the near-field region. Bull Seismol Soc Am 99:1271–1286. doi:10.1785/0120080153

    Article  Google Scholar 

  • Suryanto W, Igel H, Wassermann J, Cochard A, Schuberth B, Vollmer D, Scherbaum F, Schreiber U, Velikoseltsev A (2006) First comparison of array-derived rotational ground motions with direct ring laser measurements. Bull Seismol Soc Am 96:2059–2071. doi:10.1785/10.1785/0120060004

    Article  Google Scholar 

  • Takeo M (2009) Rotational motions observed during an earthquake swarm in April 1998 offshore Ito, Japan. Bull Seismol Soc Am 99:1457–1467. doi:10.1785/0120080173

    Article  Google Scholar 

  • Tarantola A (1988) Theoretical background for the inversion of seismic waveforms, including anelasticity and attenuation. Pure Appl Geophys 128:365–399. doi:10.1007/BF01772605

    Article  Google Scholar 

  • Tromp J, Tape C, Liu Q (2005) Seismic tomography, adjoint methods, time reversal, and banana-donut kernels. Geophys J Int 160:195–216. doi:10.1111/j.1365-246X.2006.03146.x

    Article  Google Scholar 

  • Wang H, Igel H, Gallovic F, Cochard A (2009) Source and basin effects on rotational ground motions: comparison with translations. Bull Seismol Soc Am 99:1162–1173. doi:10.1785/0120080115

    Article  Google Scholar 

  • Wassermann J, Lehndorfer S, Igel H, Schreiber U (2009) Performance test of a commercial rotational motions sensor. Bull Seismol Soc Am 99:1449–1456. doi:10.1785/0120080157

    Article  Google Scholar 

  • Wu C-F, Lee WHK, Huang HC (2009) Array deployment to observe rotational and translational ground motions along the Meishan fault, Taiwan: a progress report. Bull Seismol Soc Am 99:1468–1474. doi:10.1785/0120080185

    Article  Google Scholar 

Download references

Acknowledgements

We thank the members of the Munich Seismology group (LMU University, Munich) for the many critical and fruitful discussions. The research presented in this article was supported by the International Graduate School THESIS within the Bavarian Elite Network. Andreas Fichtner was funded by The Netherlands Research Center for Integrated Solid Earth Sciences under project number ISES-MD.5. The numerical computations were performed on the National Supercomputer HLRB-II maintained by the Leibniz-Rechenzentrum. The constructive criticism of two anonymous reviewers allowed us to improve the first version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Bernauer.

Appendix: Details for the computation of sensitivity kernels

Appendix: Details for the computation of sensitivity kernels

The forward wavefield is excited by a bandpass filtered Heaviside function between 20 and 200 s. The moment tensor components given in Nm are

$$ \begin{array}{rll} M_{\theta\theta}&=&0.710 \cdot 10^{19}\\[-4pt] M_{\phi\phi}&=&-0.356 \cdot 10^{19}\\[-4pt] M_{zz}&=&-0.355 \cdot 10^{19}\\[-4pt] M_{\theta\phi}&=&0.800 \cdot 10^{19}\\[-4pt] M_{\theta z}&=&0.315 \cdot 10^{19}\\[-4pt] M_{\phi z}&=&-1.150 \cdot 10^{19}. \end{array} $$

The sensitivity kernel K m (v) is computed via the adjoint source time function

$$ f^v_k(\mathbf{x})=\frac{1}{\int\mathbf{v}^2(\mathbf{x}^r,t)\,dt} \ddot{u}_k(\mathbf{x}^r) \delta(\mathbf{x}-\mathbf{x}^r). $$

The adjoint sources for the sensitivity kernels K m (w) and K m (s) are dipolar sources described by the moment tensor M. The explicit moment tensor components for the computation of K m (w) are

$$ \begin{array}{rll} M_{\theta\theta}&=&0\\ M_{\theta\phi}&=&\frac{1}{2\int \boldsymbol{\omega}^2(\mathbf{x}^r,t)\,dt}\omega_z(\mathbf{x}^r,t)\\ M_{\theta z}&=&\frac{-1}{2\int \boldsymbol{\omega}^2(\mathbf{x}^r,t)\,dt}\omega_{\phi}(\mathbf{x}^r,t)\\ M_{\phi\theta}&=&\frac{-1}{2\int \boldsymbol{\omega}^2(\mathbf{x}^r,t)\,dt}\omega_z(\mathbf{x}^r,t)\\ M_{\phi\phi}&=&0\\ M_{\phi z}&=&\frac{1}{2\int \boldsymbol{\omega}^2(\mathbf{x}^r,t)\,dt}\omega_{\theta}(\mathbf{x}^r,t)\\ M_{z \theta}&=&\frac{1}{2\int \boldsymbol{\omega}^2(\mathbf{x}^r,t)\,dt}\omega_{\phi}(\mathbf{x}^r,t)\\ M_{z \phi}&=&\frac{-1}{2\int \boldsymbol{\omega}^2(\mathbf{x}^r,t)\,dt}\omega_{\theta}(\mathbf{x}^r,t)\\ M_{zz}&=&0. \end{array} $$

The moment tensor components corresponding to K m (s) are given by

$$ \begin{array}{rll} M_{\theta\theta}&=&\frac{-1}{\int [\text{tr}\,\mathbf{e}(\mathbf{x}^r,t)]^2\,dt}\text{tr}\,\mathbf{e}(\mathbf{x}^r,t)\\ M_{\theta\phi}&=&0\\ M_{\theta z}&=&0\\ M_{\phi\theta}&=&0\\ M_{\phi\phi}&=&\frac{-1}{\int [\text{tr}\,\mathbf{e}(\mathbf{x}^r,t)]^2\,dt}\text{tr}\,\mathbf{e}(\mathbf{x}^r,t)\\ M_{\phi z}&=&0\\ M_{z \theta}&=&0\\ M_{z \phi}&=&0\\ M_{zz}&=&\frac{-1}{\int [\text{tr}\,\mathbf{e}(\mathbf{x}^r,t)]^2\,dt}\text{tr}\,\mathbf{e}(\mathbf{x}^r,t). \end{array} $$

For a detailed derivation of the adjoint source time functions, we refer to Fichtner and Igel (2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernauer, M., Fichtner, A. & Igel, H. Measurements of translation, rotation and strain: new approaches to seismic processing and inversion. J Seismol 16, 669–681 (2012). https://doi.org/10.1007/s10950-012-9298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-012-9298-3

Keywords

Navigation