Skip to main content
Log in

A Forward Test of the Precursory Decelerating and Accelerating Seismicity Model for California

  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Accelerating strain energy released by the generation of intermediate magnitude preshocks in a broad (critical) region, and decelerating energy released in a narrower (seismogenic) region, is considered as a distinct premonitory pattern useful in research for intermediate-term earthquake prediction. Accelerating seismicity in the broad region is satisfactorily interpreted by the critical earthquake model and decelerating seismicity in the narrower region is attributed to stress relaxation due to pre-seismic sliding. To facilitate the identification of such patterns an algorithm has been developed on the basis of data concerning accelerating and decelerating preshock sequences of globally distributed already occurred strong mainshocks. This algorithm is applied in the present work to identify regions, which are currently in a state of accelerating seismic deformation and are associated with corresponding narrower regions, which are in a state of decelerating seismic deformation in California. It has been observed that a region which includes known faults in central California is in a state of decelerating seismic strain release, while the surrounding region (south and north California, etc.) is in a state of accelerating seismic strain release. This pattern corresponds to a big probably oncoming mainshock in central California. The epicenter, magnitude and origin time, as well as the corresponding model uncertainties of this probably ensuing big mainshock have been estimated, allowing a forward testing of the model's efficiency for intermediate-term earthquake prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allégre, C.J. and Le Mouel, J.L., 1994, Introduction of scaling techniques in brittle failure of rocks, Phys. Earth Planet. Inter. 87, 85–93.

    Article  Google Scholar 

  • Andersen, J.V., Sornette, D. and Leung, K.T., 1997, Tri-critical behavior in rupture induced by disorder, Phys. Rev. Lett. 78, 2140–2143.

    Article  Google Scholar 

  • ANSS Composite earthquake Catalogue, 2005, http://www.ncedc. org/anss/.

  • Bak, P. and Tang, C., 1989, Earthquakes as self organized critical phenomenon, J. Geophys., Res. 94, 15535–15637.

    Article  Google Scholar 

  • Ben-Zion, Y., Dahmen, K., Lyakhovsky, V., Ertas, D. and Agnon, A., 1999, Self-driven mode switching of earthquake activity on a fault system, Earth. Planet. Sci. Lett. 172, 11–21.

    Article  Google Scholar 

  • Ben-Zion, Y., and Lyakhovsky, V., 2002, Accelerating seismic release and related aspects of seismicity patterns on earthquake faults, Pure and Appl. Geoph. 159, 2385–2412.

    Article  Google Scholar 

  • Bowman, D.D., Quillon, G., Sammis, C.G., Sornette, A. and Sornette, D., 1998, An observational test of the critical earthquake concept, J. Geophys. Res. 103, 24359–24372.

    Article  Google Scholar 

  • Bufe, C.G. and Varnes, D.J., 1993, Predictive modeling of seismic cycle of the Great San Francisco Bay Region, J. Geophys. Res. 98, 9871–9883.

    Article  Google Scholar 

  • Bufe, C.G., Nishenko, S.P. and Varnes, D.J., 1994, Seismicity trends and potential for large earthquakes in Alaska-Aleutian region, Pure Appl. Geophys. 142, 83–99.

    Article  Google Scholar 

  • Chouliaras, G. and Stavrakakis, G., 2001, Current seismic quiescence in Greece: Implications for seismic hazard, J. Seismology, 5, 595–608.

    Article  Google Scholar 

  • Dobrovolsky, J.P., Zubkov, S.I. and Miachkin, B.J., 1979, Estimation of the size of earthquake preparation zones, Pure Appl. Geophys. 117, 1025–1044.

    Article  Google Scholar 

  • Evison, F.F., 2001, Long-range synoptic earthquake forecasting: an aim for the millennium, Tectonophysics. 333, 207–215.

    Article  Google Scholar 

  • Grasso, J.R. and Sornette, D., 1998, Testing self organized criticality by induced seismicity, J. Geophys. Res. 103, 29965–29998.

    Article  Google Scholar 

  • Guarino, A.S., Ciliberto, S. and Garcimartin, A., 1999, Failure time and microcrack nucleation, Europhys. Lett. 47, 456–461.

    Article  Google Scholar 

  • Hainzl, S., Zoller, G., Kurths, J. and Zschau, J., 2000, Seismic quiescence as an indicator for large earthquakes in a system of self-organized criticality, Geophys. Res. Letters. 27, 597–600.

    Article  Google Scholar 

  • Harvard Seismology (HRVD), 2005, CMT catalogue, http://www. seismology.harvard. edu/CMTsearch.html.

  • International Seismological Centre (ISC), 2005. On-line Bulletin, Internat. Seis. Cent., Thatcham, United Kingdom, http://www.isc. ac.uk/Bull.

  • Jaumé, S.C., 1992, Moment release rate variations during the seismic circle in the Alaska-Aleutians subduction zone, extended abstract, Proceed. Wadati Conference on Great Subduction Earthquakes, University of Alaska, 123–128.

  • Jaumé, S.C. and Sykes, L.R., 1999, Evolving towards a critical point: a review of accelerating seismic moment/energy release rate prior to large and great earthquakes, Pure Appl. Geophys. 155, 279–306.

    Article  Google Scholar 

  • Kanamori, H., 1981, The nature of seismicity patterns before large earthquakes. In Earthquake Prediction, an International Review, M. Ewing, Series 4, Simpson, D. and Richards, P., editors, Am. Geophys. Union, Washington, D.C., 1–19.

    Google Scholar 

  • Karakaisis, G.F., Scordilis, E.M., Papazachos, C.B. and Papazachos, B.C., 2005, A catalogue of earthquakes in California for the period 1901–2005. Publ. Geoph. Laboratory, University of Thessaloniki.

  • Kato, N., Ohtake, M. and Hirasawa, T., 1997, Possible mechanism of precursory seismic quiescence: Regional stress relaxation due to preseismic sliding, Pure Appl. Geophys. 150, 249–267.

    Article  Google Scholar 

  • Knopoff, L., Levshina, T., Keillis-Borok, V.J. and Mattoni, C., 1996, Increased long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California, J. Geophys. Res. 101, 5779–5796.

    Article  Google Scholar 

  • Lamaignére, L., Carmona, F. and Sornette, D., 1996, Experimental realization of critical thermal fuse rupture, Phys. Res. Lett. 77, 2738–2741.

    Article  Google Scholar 

  • Mogi, K., 1969, Some features of the recent seismic activity in and near Japan II. Activity before and after great earthquakes, Bull. Earthquake Res. Inst., Univ. Tokyo 47, 395–417.

    Google Scholar 

  • National Earthquake Information Center (NEIC), 2005, On-line Bulletin, USGS/NEIC (PDE) 1973 – Present, http://neic.usgs.gov/ .

  • Papadopoulos, G.A., 1986, Long term earthquake prediction in western Hellenic arc, Earthquake Pred. Res 4, 131–137.

    Google Scholar 

  • Papazachos, B.C. and Papazachos, C.B., 2000, Accelerated preshock deformation of broad regions in the Aegean area, Pure Appl. Geophys. 157, 1663–1681.

    Article  Google Scholar 

  • Papazachos, B.C., Karakaisis, G.F., Papazachos, C.B. and Scordilis, E.M., 2005c, Perspectives for earthquake prediction in the Mediterranean and contribution of geological observations, J. Geol. Soc., (in press).

  • Papazachos, C.B., 2001, An algorithm of intermediate-term earthquake prediction using a model of accelerating seismic deformation, 2ndHellenic Conference on Earthquake Engineering and Engineering Seismology, 28–30 November 2001, 107–115.

  • Papazachos, C.B., 2003, Minimum preshock magnitude in critical regions of accelerating seismic crustal deformation, Boll. Geof. Teor. Applic. 44, 103–113.

    Google Scholar 

  • Papazachos, C.B. and Papazachos, B.C., 2001, Precursory accelerating Benioff strain in the Aegean area, Ann. Geofis. 144, 461–474.

    Google Scholar 

  • Papazachos, C.B., Karakaisis, G.F., Savvaidis, A.S. and Papazachos, B.C., 2002, Accelerating seismic crustal deformation in the southern Aegean area, Bull. Seism. Soc. Am. 92, 570–580.

    Article  Google Scholar 

  • Papazachos, C.B., Karakaisis, G.F., Scordilis, E.M. and Papazachos, B.C., 2004a, Probabilities of activation of seismic faults in critical regions of the Aegean area, Geophys. J. Int. 159, 679–687.

    Article  Google Scholar 

  • Papazachos, C.B., Scordilis, E.M., Karakaisis, G.F. and Papazachos, B.C., 2004b, Decelerating preshock seismic deformation in fault regions during critical periods, Bull. Geol. Soc. Greece 36, 1–9.

    Google Scholar 

  • Papazachos, C.B., Karakaisis, G.F., Scordilis, E.M. and Papazachos, B.C., 2005a, Global observational properties of the critical earthquake model, Bull. Seismol. Soc. Am. 9, 1841–1855.

    Article  Google Scholar 

  • Papazachos, C.B., Karakaisis, G.F., Scordilis, E.M. and Papazachos, B.C., 2005b, New observational information on the precursory accelerating and decelerating strain energy release, Tectonophysics, (in press).

  • Robinson, R., 2000, A test of the precursory accelerating moment release model on some recent New Zealand earthquakes, Geophys. J. Int. 140, 568–576.

    Article  Google Scholar 

  • Rosendahl, J.M., Vekic, M. and Rutledge, K.E., 1994, Probability of large avalanches on sand pile, Phys. Rev. Lett. 73, 537–540.

    Article  Google Scholar 

  • Rundle, J.B., Klein, W. and Gross, S., 1996. Dynamics of a traveling density wave model for earthquakes, Phys. Rev. lett. 76, 4285–4288.

    Article  Google Scholar 

  • Rundle, J.B., Klein, W., Turcotte, D.L. and Malamud, B.D., 2000, Precursory seismic activation and critical point phenomena, Pure Appl. Geophys. 157, 2165–2182.

    Article  Google Scholar 

  • Sammis, C.G. and Smith, S.N., 1999, Seismic cycles and the evolution of stress correlation in cellular automation models of finite fault networks, Pure Appl. Geophys. 155, 307–334.

    Article  Google Scholar 

  • Scholz, Ch.H., 1988, Mechanism of seismic quiescences, Pure Appl. Geophys. 26, 701–718.

    Article  Google Scholar 

  • Scordilis, E.M., 2006, Empirical global relations converting MS and mb to moment magnitude, J. Seismology, (in press).

  • Scordilis, E.M., Papazachos, C.B., Karakaisis, G.F. and Karakostas, V.G., 2004, Accelerating seismic crustal deformation before strong mainshocks in Adriatic and its importance for earthquake prediction, J. Seismology 8, 57–70.

    Article  Google Scholar 

  • Sornette, A. and Sornette, D., 1990, Earthquake rupture as a critical point. Consequences for telluric precursors, Tectonophysics, 179, 327–334.

    Article  Google Scholar 

  • Sornette, D. and Sammis, C.G., 1995, Complex critical exponents from renormalization group theory of earthquakes: implications for earthquake predictions, J. Phys. I. 5, 607–619.

    Article  Google Scholar 

  • Sykes, L.R. and Jaumé, S., 1990, Seismic activity on neighboring faults as a long term precursor to large earthquakes in the San Francisco Bay area, Nature, 348, 595–599.

    Article  Google Scholar 

  • Tocher, D., 1959, Seismic history of the San Francisco bay region, Calif. Div. Mines Spec. Rep. 57, 39–48.

    Google Scholar 

  • Tzanis, A., Vallianatos, F. and Makropoulos, K., 2000, Seismic and electrical precursors to the 17-1-1983, M7 Kefallinia earthquake, Greece, signatures of a SOC system, Phys. Chem. Earth (A) 25, 281–287.

    Article  Google Scholar 

  • Tzanis, A. and Vallianatos, F., 2003, Distributed power low seismicity changes and crustal deformation in the SW Hellenic arc, Nat. Haz. Earth Sys. Sci. 3, 179–195.

    Google Scholar 

  • Vanneste, C., and Sornette, D., 1992, Dynamics of rupture in thermal fuse models, J. Phys. I. 2, 1621–1644.

    Article  Google Scholar 

  • Weatherley, D., Jaumé, S.C. and Mora, P., 2000. Evolution of stress deficit and changing rates of seismicity in cellular automation models of earthquake faults, Pure Appl. Geophys. 157, 2183–2207.

    Article  Google Scholar 

  • Wessel, P. and Smith, W., 1995, New version of the Generic Mapping Tools, EOS, 76–329.

  • Wyss, M., 1997, Cannot earthquakes be predicted?, Science, 278, 487–488.

    Article  Google Scholar 

  • Wyss, M., Klein, F. and Johnston, A.C., 1981, Precursors of the Kalapana M=7.2 earthquake, J. Geophys. Res. 86, 3881–3900.

    Article  Google Scholar 

  • Wyss, M. and Habermann, R.E., 1988, Precursory seismic quiescence, Pure Appl. Geophys. 126, 319–332.

    Article  Google Scholar 

  • Zöller, G. and Hainzl, S., 2002, A systematic spatiotemporal test of the critical point hypothesis for large earthquakes, Geophys. Res. Lett. 29, 53–57.

    Article  Google Scholar 

  • Zöller, G., Hainzl, S., Kurths, J. and Zschau, J., 2002, A systematic test on precursory seismic quiescence in Armenia, Natural Hazards, 26, 245–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Karakaisis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papazachos, B.C., Scordilis, E.M., Papazachos, C.B. et al. A Forward Test of the Precursory Decelerating and Accelerating Seismicity Model for California. J Seismol 10, 213–224 (2006). https://doi.org/10.1007/s10950-005-9009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-005-9009-4

Keywords

Navigation