Skip to main content
Log in

Effective P-type N-doped α-Ga2O3 from First-Principles Calculations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The realization of an effective p-type doping in Ga2O3 is crucial for both fundamental science and emerging applications. P-type doping in the β-Ga2O3 phase has been observed tremendously, whereas the researches of p-type features in the allotropy α-Ga2O3 phase are rare. In this work, we study p-type N-doped α-Ga2O3 by first-principles calculations with generalized gradient approximation (GGA) + U method. The N foreigner can easily substitute the O atom in α-Ga2O3 and acts as an effective shallow hole dopant with a modest acceptor ionization level of ~ 0.1 eV. Moreover, the N3−, N2+, and N3− are the predominant charge states, corresponding to one N impurity substitution of anion O, cation Ga, and the occupancy of the interstitial site in α-Ga2O3, respectively. N impurity leads to the optical transition from ultraviolet light to visible-infrared range in α-Ga2O3 as suggested by the dielectric function calculations, which can be ascribed to the transition from O 2p orbitals to N 2p orbitals or inter-band transition between the formed holes of N 2p impurity. Our work may provide theoretical guidance for designing p-type N-doped α-Ga2O3 materials and shed light on its application as potential optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Harada, T., Ito, S., Tsukazaki, A.: Electric dipole effect in PdCoO2/β-Ga2O3 Schottky diodes for high-temperature operation Sci. Adv. 5, eaax5733 (2019)

  2. Harada, T., Tsukazaki, A.: Dynamic characteristics of PdCoO2/β-Ga2O3 Schottky junctions Appl. Phys. Lett. 116, 232104 (2020)

    Google Scholar 

  3. Tang, R., Li, G., Li, C., Li, J., Zhang, Y., Huang, K., Ye, J., Li, C., Kang, J.Y., Zhang, R., Zheng, Y.D.: Localized surface plasmon enhanced Ga2O3 solar blind photodetectors Opt. Express 28, 5731–5740 (2020)

    Article  ADS  Google Scholar 

  4. Jiang, Z.X., Wu, Z.Y., Ma, C.C., Deng, J.N., Zhang, H., Xu, Y., Ye, J.D., Fang, Z.L., Zhang, G.Q., Kang, J.Y., Zhang, T.-Y.: P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product Mater. Today Phys. 14, 100226 (2020)

    Google Scholar 

  5. Wu, C., Wu, F., Hu, H., Wang, S., Liu, A., Guo, D.: Review of self-powered solar-blind photodetectors based on Ga2O3 Mater. Today Phys. 28, 100883 (2022)

    Google Scholar 

  6. Pang, R., Teramura, K., Morishita, M., Asakura, H., Hosokawa, S., Tanaka, T.: Enhanced CO evolution for photocatalytic conversion of CO2 by H2O over Ca modified Ga2O3 Commun. Chem. 3, 137 (2020)

    Google Scholar 

  7. Tadjer, M.J.: Toward gallium oxide power electronics Science 378, 724–725 (2022)

    Google Scholar 

  8. Zhang, J., Dong, P., Dang, K., Zhang, Y., Yan, Q., Xiang, H., Su, J., Liu, Z., Si, M., Gao, J., Kong, M., Zhou, H., Hao, Y.: Ultra-wide bandgap semiconductor Ga2O3 power diodes Nat. Commun. 13, 3900 (2022)

    Google Scholar 

  9. He, H., Wu, C., Hu, H., Wang, S., Zhang, F., Guo, D., Wu, F.: Bandgap engineering and oxygen vacancy defect electroactivity inhibition in highly crystalline N-alloyed Ga2O3 films through plasma-enhanced technology. J. Phys. Chem. Lett. 14, 6444–6450 (2023)

    Article  Google Scholar 

  10. Zhang, J., Shi, J., Qi, D.-C., Chen, L., Zhang, K. H. L.: Recent progress on the electronic structure, defect, and doping properties of Ga2O3 APL Mater. 8, 020906 (2020)

  11. Pearton, S.J., Yang, J., Cary, P.H., IV., Ren, F., Kim, J., Tadjer, M.J., Mastro, M.A.: A review of Ga2O3 materials, processing, and devices Appl. Phys. Rev. 5, 011301 (2018)

    Google Scholar 

  12. Cheng, Y., Ye, J., Lai, L., Fang, S., Guo, D.: Ambipolarity regulation of deep-UV photocurrent by controlling crystalline phases in Ga2O3 nanostructure for switchable logic applications Adv. Electron. Mater. 9, 2201216 (2023)

    Article  Google Scholar 

  13. Ping, L.K., Berhanuddin, D.D., Mondal, A.K., Menon, P.S., Mohamed, M.A.: Properties and perspectives of ultrawide bandgap Ga2O3 in optoelectronic applications Chin. J. Phys. 73, 195–212 (2021)

    Google Scholar 

  14. Wang, Y., Su, J., Yuan, H., Lin, Z., Zhang, J., Hao, Y., Chang, J.: Impurity level properties in transition metal doped α-Ga2O3 for optoelectronic applications Semicond. Sci. Technol. 36, 095026 (2021)

    ADS  Google Scholar 

  15. Ahmadi, E., Oshima, Y.: Materials issues and devices of α- and β-Ga2O3. J. Appl. Phys. 126, 160901 (2019)

    Article  ADS  Google Scholar 

  16. Zeng, H., Wu, M., Cheng, M., Lin, Q.: Effects of Cu, Zn doping on the structural, electronic, and optical properties of α-Ga2O3: first-principles calculations. Materials 16, 5317 (2023)

    Article  ADS  Google Scholar 

  17. Chen, X., Xu, Y., Zhou, D., Yang, S., Ren, F.-f, Lu, H., Tang, K., Gu, S., Zhang, R., Zheng, Y., Ye, J.: Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures ACS Appl. Mater. Interfaces 9, 36997–37005 (2017)

    Article  Google Scholar 

  18. Bhuiyan, A. M. A. U., Feng, Z., Huang, H.-L., Meng, L., Hwang, J., Zhao, H.: Metalorganic chemical vapor deposition of α-Ga2O3 and α-(AlxGa1−x)2O3 thin films on m-plane sapphire substrates. APL Mater. 9, 101109 (2021)

  19. Smirnov, A.M., Kremleva, A.V., Sharofidinov, S.S., Bougrov, V.E., Romanov, A.E.: Stress–strain state in α-Ga2O3 epitaxial films on α-Al2O3 substrates Appl. Phys. Express 13, 075502 (2020)

    Article  ADS  Google Scholar 

  20. Kobayashi, T., Gake, T., Kumagai, Y., Oba, F., Matsushita, Y.-i: Energetics and electronic structure of native point defects in α-Ga2O3 Appl. Phys. Express 12, 091001 (2019)

    Article  ADS  Google Scholar 

  21. Pan, Y.: First-principles investigation of the influence of point defect on the electronic and optical properties of α-Ga2O3 Int. J. Energy Res. 46, 13070–13078 (2022)

    Article  Google Scholar 

  22. Zeng, H., Wu, M., Wang, H.Q., Zheng, J.C., Kang, J.Y.: Tuning the magnetism in boron-doped strontium titanate Materials 12, 5686 (2020)

    Google Scholar 

  23. Werner, P., Casula, M., Miyake, T., Aryasetiawan, F., Millis, A.J., Biermann, S.: Satellites and large doping and temperature dependence of electronic properties in hole-doped BaFe2As2 Nat. Phys. 8, 331–337 (2012)

    Google Scholar 

  24. Wang, S., Hung, N.T., Tian, H., Islam, M.S., Saito, R.: Switching behavior of a heterostructure based on periodically doped graphene nanoribbon Phys. Rev. Appl. 16, 024030 (2021)

    Article  Google Scholar 

  25. Zeng, H., Wu, M., Wang, H.Q., Zheng, J.C., Kang, J.Y.: Tuning the magnetic and electronic properties of strontium titanate by carbon doping Front. Phys. 16, 43501 (2021)

    Google Scholar 

  26. Simon, J., Protasenko, V., Lian, C., Xing, H., Jena, D.: Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327, 60–64 (2010)

    Article  ADS  Google Scholar 

  27. Wang, S., Yu, J.: Magnetic behaviors of 3d transition metal-doped silicane: a first-principle study. J. Supercond. Nov. Magn. 31, 2789–2795 (2018)

    Article  Google Scholar 

  28. He, W., Zhang, S., Luo, Y., Wang, S.: Exploring monolayer GaN doped with transition metals: insights from first-principles studies. J. Supercond. Nov. Magn. 37, 157–163 (2024)

    Article  Google Scholar 

  29. Choi, M., Son, J.: Doping-induced bandgap tuning of α-Ga2O3 for ultraviolet lighting Curr. Appl. Phys. 17, 713–716 (2017)

    ADS  Google Scholar 

  30. Zhi, Y.-S., Jiang, W.-Y., Liu, Z., Liu, Y.-Y., Chu, X.-L., Liu, J.-H., Li, S., Yan, Z.-Y., Wang, Y.-H., Li, P.-G., Wu, Z.-P., Tang, W.-H.: High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film Chin. Phys. B 30, 057301 (2021)

    Google Scholar 

  31. Hu, D., Wang, Y., Wang, Y., Huan, W., Dong, X., Yin, J., Zhu, J.: Fabrication and properties of a solar-blind ultraviolet photodetector based on Si-doped β-Ga2O3 film grown on p-Si (111) substrate by MOCVD. Optik, 245, 167708 (2021)

  32. Farzana, E., Mauze, A., Varley, J. B., Blue, T. E., Speck, J. S., Arehart, A. R., Ringel, S. A.: Influence of neutron irradiation on deep levels in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy. APL Mater. 7, 121102 (2019)

  33. Alema, F., Seryogin, G., Osinsky, A., Osinsky, A.: Ge doping of β-Ga2O3 by MOCVD. APL Mater. 9, 091102 (2021)

  34. Zhou, W., Xia, C., Sai, Q., Zhang, H.: Controlling n-type conductivity of β-Ga2O3 by Nb doping Appl. Phys. Lett. 111, 242103 (2017)

    Google Scholar 

  35. Chen, J.-X., Li, X.-X., Tao, J.J., Cui, H.-Y., Huang, W., Ji, Z.-G., Sai, Q.-L., Xia, C.-T., Lu, H.-L., Zhang, D.W.: Fabrication of a Nb-doped β-Ga2O3 nanobelt field-effect transistor and its low-temperature behavior ACS Appl. Mater. Interfaces 12, 8437–8445 (2020)

    Article  Google Scholar 

  36. Yoon, Y., Hwang, W.S., Shin, M.: Solar-blind ultrathin Sn-doped polycrystalline Ga2O3 UV phototransistor for normally off operation Adv. Photonics Res. 3, 2100316 (2022)

    Article  Google Scholar 

  37. Guo, D., Su, Y., Shi, H., Li, P., Zhao, N., Ye, J., Wang, S., Liu, A., Chen, Z., Li, C., Tang, W.: Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn: Ga2O3 pn junction. ACS Nano 12, 12827–12835 (2018)

    Article  Google Scholar 

  38. Uchida, T., Kaneko, K., Fujita, S.: Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates. MRS Adv 3, 171–7 (2018)

    Google Scholar 

  39. Morimoto, S., Nishinaka, H., Yoshimoto, M.: Growth and characterization of F-doped α-Ga2O3 thin films with low electrical resistivity. Thin Solid Films 682, 18–23 (2019)

    Article  ADS  Google Scholar 

  40. Dong, L., Yu, J., Zhang, Y., Jia, R.: Elements (Si, Sn, and Mg) doped α-Ga2O3: first-principles investigations and predictions Comp. Mater. Sci. 156, 273–279 (2019)

    Google Scholar 

  41. Zhang, L.-Y., Yan, J.-L., Zhang, Y.-J., Li, T.: Effects of N-doping concentration on the electronic structure and optical properties of N-doped β-Ga2O3 Chin. Phys. B 21, 067102 (2012)

    Google Scholar 

  42. Dong, L., Jia, R., Li, C., Xin, B., Zhang, Y.: Ab initio study of N-doped β-Ga2O3 with intrinsic defects: the structural, electronic and optical properties. J. Alloys Compd. 712, 379–385 (2017)

    Article  Google Scholar 

  43. Zhang, N., Wang, Y.S., Chen, Z., Zhou, B., Gao, J., Wu, Y., Ma, Y., Hei, H., Yu, S.: Fabrication and properties of N-doped top layer of Ga2O3 films by magnetron sputtering Appl. Surf. Sci. 604, 154666 (2022)

    Article  Google Scholar 

  44. Liu, L.L., Li, M.K., Yu, D.Q., Zhang, J., Zhang, H., Qian, C., Yang, Z.: Fabrication and characteristics of N-doped β-Ga2O3 nanowires Appl. Phys. A 98, 831–835 (2010)

    Google Scholar 

  45. Ma, C., Wu, Z., Jiang, Z., Chen, Y., Ruan, W., Zhang, H., Zhu, H., Zhang, G., Kang, J., Zhang, T.-Y., Chu, J., Fang, Z.: Exploring the feasibility and conduction mechanisms of P-type nitrogen-doped β-Ga2O3 with high hole mobility. J. Mater. Chem. C 10, 6673–6681 (2022)

    Article  Google Scholar 

  46. Wu, Z., Jiang, Z., Ma, C., Ruan, W., Chen, Y., Zhang, H., Zhang, G., Fang, Z., Kang, J., Zhang, T.-Y.: Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films Mater. Today Phys. 17, 100356 (2021)

    Google Scholar 

  47. Yamamura, K., Zhu, L., Irvine, C., Singh, M., Bansal, V., Scott, J., Phillips, M. R., Jallandhra, A., Ton-That, C.: Luminescence signatures of nitrogen in β-Ga2O3 nanowires Oxide-based Materials and Devices XIII PC12002 PC120020C. (2022)

  48. Luan, S., Dong, L., Ma, X., Jia, R.: The further investigation of N-doped β-Ga2O3 thin films with native defects for Schottky-barrier diode. J. Alloys Compd. 812, 152026 (2020)

    Article  Google Scholar 

  49. Kresse, G., Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54, 169–186 (1996)

    Article  Google Scholar 

  50. Kresse, G., Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comp. Mater. Sci. 6, 15–50 (1996)

    Google Scholar 

  51. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects Phys. Rev. 140, A1133–A1138 (1965)

    Google Scholar 

  52. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  53. Wei, Y., Wang, T., Zhang, Y., Qi, C., Luan, J., Ma, G., Tsai, H.-S., Liu, C., Huo, M.: Effects of carbon related defects on opto-electronic properties of β-Ga2O3: the first principle calculation. Results Phys. 17, 103060 (2020)

  54. Tang, C., Sun, J., Lin, N., Jia, Z., Mu, W., Tao, X., Zhao, X.: Electronic structure and optical property of metal-doped Ga2O3: a first principles study. RSC Adv 6, 78322–78334 (2016)

    Article  ADS  Google Scholar 

  55. Goyal, A., Gorai, P., Peng, H., Lany, S., Stevanović, V.: A computational framework for automation of point defect calculations Comput. Mater. Sci. 130, 1–9 (2017)

    Google Scholar 

  56. Wang, V., Xu, N., Liu, J.-C., Tang, G., Geng, W.-T.: VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code Comput. Phys. Commun. 267, 108033 (2021)

    Article  Google Scholar 

  57. Mu, S., Wang, M., Varley, J.B., Lyons, J.L., Wickramaratne, D., Van de Walle, C.G.: Role of carbon and hydrogen in limiting n-type doping of monoclinic (AlxGa1−x)2O3 Phys. Rev. B 105, 155201 (2022)

    Article  Google Scholar 

  58. Sun, D., Gao, Y., Xue, J., Zhao, J.: Defect stability and electronic structure of doped β-Ga2O3: a comprehensive ab initio study. J. Alloys Compd. 794, 374–384 (2019)

    Article  Google Scholar 

  59. Mondal, A.K., Mohamed, M.A., Ping, L.K., Mohamad Taib, M.F., Samat, M.H., Mohammad Haniff, M.A.S., Bahru, R.: First-principles studies for electronic structure and optical properties of  p-type calcium doped α-Ga2O3. Materials 14, 604 (2021)

  60. Pan, Y.: Effects of Cu, Ag and Au on electronic and optical properties of α-Ga2O3 oxide according to first-principles calculations. J. Phys. Chem. Solides 174, 111152 (2023)

    Article  Google Scholar 

  61. Marezio, M., Remeika, J.P.: Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2−xFexO3. J. Chem. Phys. 46, 1862–1865 (1967)

    Article  ADS  Google Scholar 

  62. Wang, S., Tian, H., Ren, C., Yu, J., Sun, M.: Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide Sci. Rep. 8, 12009 (2018)

    Google Scholar 

Download references

Funding

This project was funded by the Scientific Research Projects of Hunan Provincial Department of Public Education (Grant No. 23B0752), the Talent Research Project for Hunan University of Science and Engineering (Grant No. 11102515006), the National Science Foundation of Fujian Province of China (Grant No.2022J01007), and the National Natural Science Foundation of China (Grant No. U22B20132).

Author information

Authors and Affiliations

Authors

Contributions

H. Zeng performed the calculations; H. Zeng and M. Wu oversaw the project; H. Zeng and M. Wu engaged in thorough data analysis and discussion; H. Zeng provided assistance with methodology and software; H. Zeng and M. Wu evaluated the research findings; H. Zeng prepared the draft manuscript; M. Wu and C. Ma assisted with the revision of the manuscript. The published version of the manuscript has been read and approved by all authors.

Corresponding authors

Correspondence to H. Zeng or M. Wu.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Ma, C. & Wu, M. Effective P-type N-doped α-Ga2O3 from First-Principles Calculations. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06741-6

Keywords

Navigation