Skip to main content
Log in

Temperature Effects on the Structural, Morphological, and Magnetic Properties of Iron Oxide Nanoclusters Using Solvothermal Method

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The creation of iron oxide nanostructures with complementary functions has emerged as a requirement for more efficient preclinical nanoparticle-mediated biological research. The physical and magnetic properties of nanoparticles for certain applications are determined by the particle morphology and size, which are crucial factors. We present a method for producing magnetite (Fe3O4) nanoclusters of uniform size by a simple and cost-effective solvothermal process, utilising oleic acid (OA) as the coordinating ligand. The nanocluster sizes are altered by manipulating the temperature during the solvothermal process. Three separate sets of Fe3O4 nanoclusters are synthesised and characterised. The X-ray diffraction (XRD) spectrum exhibits a singular phase characterised by a cubic spinel structure. The particle sizes in the nano range were verified by FESEM, and the interplanar spacing measured by TEM is consistent with that determined by XRD. The confirmation of nanocluster formation was achieved through the utilisation of FESEM and AFM images. The rising temperature correlates with the creation of nanoclusters. The rise in reaction temperature resulted in an augmentation of the size of the crystallite, the shape of nanocrystals, and a rise in the value of saturation magnetization. A high Ms from the magnetic property study confirmed that all the synthesised materials are superparamagnetic. The favourable magnetic characteristics and biocompatibility of the synthesised nanoclusters allow them suitable for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Maity, D., Chandrasekharan, P., Pradhan, P., Chuang, K.H., Xue, J.M., Feng, S.S., Ding, J.: Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. J. Mater. Chem. 21, 14717–14724 (2011). https://doi.org/10.1039/c1jm11982f

    Article  Google Scholar 

  2. Ma, W., Sha, X., Gao, L., Cheng, Z., Meng, F., Cai, J., Tan, D., Wang, R.: Effect of iron oxide nanocluster on enhanced removal of molybdate from surface water and pilot scale test. Colloids Surfaces A Physicochem. Eng. Asp. 478, 45–53 (2015). https://doi.org/10.1016/j.colsurfa.2015.03.032

    Article  Google Scholar 

  3. Kostopoulou, A., Brintakis, K., Fragogeorgi, E., Anthousi, A., Manna, L., Begin-Colin, S., Billotey, C., Ranella, A., Loudos, G., Athanassakis, I., Lappas, A.: Iron oxide colloidal nanoclusters as theranostic vehicles and their interactions at the cellular level. Nanomaterials 8, 1–22 (2018). https://doi.org/10.3390/nano8050315

    Article  Google Scholar 

  4. Tang, Y., Liu, Y., Li, W., Xie, Y., Li, Y., Wu, J., Wang, S., Tian, Y., Tian, W., Teng, Z., Lu, G.: Synthesis of sub-100 nm biocompatible superparamagnetic Fe3O4 colloidal nanocrystal clusters as contrast agents for magnetic resonance imaging. RSC Adv. 6, 62550–62555 (2016). https://doi.org/10.1039/c6ra09344b

    Article  ADS  Google Scholar 

  5. Gavilán, H., Avugadda, S.K., Fernández-Cabada, T., Soni, N., Cassani, M., Mai, B.T., Chantrell, R., Pellegrino, T.: Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 50, 11614–11667 (2021). https://doi.org/10.1039/d1cs00427a

    Article  Google Scholar 

  6. Medinger, J., Nedyalkova, M., Lattuada, M.: Solvothermal synthesis combined with design of experiments—optimization approach for magnetite nanocrystal clusters. Nanomaterials 11, 1–19 (2021). https://doi.org/10.3390/nano11020360

    Article  Google Scholar 

  7. Xiao, Z., Zhang, L., Colvin, V.L., Zhang, Q., Bao, G.: Synthesis and application of magnetic nanocrystal clusters. Ind. Eng. Chem. Res. 61, 7613–7625 (2022). https://doi.org/10.1021/acs.iecr.1c04879

    Article  Google Scholar 

  8. Albarqi, H.A., Wong, L.H., Schumann, C., Sabei, F.Y., Korzun, T., Li, X., Hansen, M.N., Dhagat, P., Moses, A.S., Taratula, O., Taratula, O.: Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano 13, 6383–6395 (2019). https://doi.org/10.1021/acsnano.8b06542

    Article  Google Scholar 

  9. Nikitin, A.A., Shchetinin, I.V., Tabachkova, N.Y., Soldatov, M.A., Soldatov, A.V., Sviridenkova, N.V., Beloglazkina, E.K., Savchenko, A.G., Fedorova, N.D., Abakumov, M.A., Majouga, A.G.: Synthesis of iron oxide nanoclusters by thermal decomposition. Langmuir 34, 4640–4650 (2018). https://doi.org/10.1021/acs.langmuir.8b00753

    Article  Google Scholar 

  10. Sathya, A., Kalyani, S., Ranoo, S., Philip, J.: One-step microwave-assisted synthesis of water-dispersible Fe 3 O 4 magnetic nanoclusters for hyperthermia applications. J. Magn. Magn. Mater. Magn. Magn. Mater. 439, 107–113 (2017). https://doi.org/10.1016/j.jmmm.2017.05.018

    Article  ADS  Google Scholar 

  11. Xu, X., Xiang, H., Wang, Z., Wu, C., Lu, C.: Doping engineering and functionalization of iron oxide nanoclusters for biomedical applications. J. Alloys Compd. 923, 166459 (2022). https://doi.org/10.1016/j.jallcom.2022.166459

    Article  Google Scholar 

  12. Fu, J., He, L., Xu, W., Zhuang, J., Yang, X., Zhang, X., Wu, M., Yin, Y.: Formation of colloidal nanocrystal clusters of iron oxide by controlled ligand stripping. Chem. Commun. Commun. 52, 128–131 (2016). https://doi.org/10.1039/c5cc07348k

    Article  Google Scholar 

  13. Ingram, D.R., Kotsmar, C., Yoon, K.Y., Shao, S., Huh, C., Bryant, S.L., Milner, T.E., Johnston, K.P.: Superparamagnetic nanoclusters coated with oleic acid bilayers for stabilization of emulsions of water and oil at low concentration. J. Colloid Interface Sci. 351, 225–232 (2010). https://doi.org/10.1016/j.jcis.2010.06.048

    Article  ADS  Google Scholar 

  14. Kralj, S., Makovec, D.: The chemically directed assembly of nanoparticle clusters from superparamagnetic iron-oxide nanoparticles. RSC Adv. 4, 13167–13171 (2014). https://doi.org/10.1039/c4ra00776j

    Article  ADS  Google Scholar 

  15. Ramasamy, K., Mazumdar, D., Zhou, Z., Wang, Y.H.A., Gupta, A.: Colloidal synthesis of magnetic CuCr 2S 4 nanocrystals and nanoclusters. J. Am. Chem. Soc. 133, 20716–20719 (2011). https://doi.org/10.1021/ja209575w

    Article  Google Scholar 

  16. Wilcoxon, J.P., Abrams, B.L.: Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 35, 1162–1194 (2006). https://doi.org/10.1039/b517312b

    Article  Google Scholar 

  17. Zhang, L., He, R., Gu, H.C.: Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006). https://doi.org/10.1016/j.apsusc.2006.05.023

    Article  ADS  Google Scholar 

  18. Lai, C.W., Low, F.W., Tai, M.F., Abdul Hamid, S.B.: Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Adv. Polym. Technol. Polym. Technol. 37, 1712–1721 (2018). https://doi.org/10.1002/adv.21829

    Article  Google Scholar 

  19. Mahdavi, M., Ahmad, M. Bin., Haron, M.J., Namvar, F., Nadi, B., Ab Rahman, M.Z., Amin, J.: Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 7533–7548 (2013). https://doi.org/10.3390/molecules18077533

    Article  Google Scholar 

  20. Tadic, M., Kralj, S., Jagodic, M., Hanzel, D., Makovec, D.: Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Appl. Surf. Sci. 322, 255–264 (2014). https://doi.org/10.1016/j.apsusc.2014.09.181

    Article  ADS  Google Scholar 

  21. Goswami, M.M.: Synthesis of micelles guided magnetite (Fe3O4) hollow spheres and their application for ac magnetic field responsive drug release. Sci. Rep. 6, 1–10 (2016). https://doi.org/10.1038/srep35721

    Article  Google Scholar 

  22. Mandal, M., Dey, C., Bandyopadhyay, A., Sarkar, D.: Micelles driven magnetite ( Fe 3 O 4) hollow spheres and a study on AC magnetic properties for hyperthermia application. J. Magn. Magn. Mater. Magn. Magn. Mater. 417, 376–381 (2016). https://doi.org/10.1016/j.jmmm.2016.05.069

    Article  ADS  Google Scholar 

  23. Li, Z., Wang, C., Cheng, L., Gong, H., Yin, S., Gong, Q., Li, Y., Liu, Z.: PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials 34, 9160–9170 (2013). https://doi.org/10.1016/j.biomaterials.2013.08.041

    Article  Google Scholar 

  24. Ganesan, V., Lahiri, B.B., Louis, C., Philip, J., Damodaran, S.P.: Size-controlled synthesis of superparamagnetic magnetite nanoclusters for heat generation in an alternating magnetic field. J. Mol. Liq. 281, 315–323 (2019). https://doi.org/10.1016/j.molliq.2019.02.095

    Article  Google Scholar 

  25. Mouraki, A., Alinejad, Z., Sanjabi, S., Mahdavian, A.R.: Anisotropic magnetite nanoclusters with enhanced magnetization as an efficient ferrofluid in mass transfer and liquid hyperthermia. New J. Chem. 43, 8044–8051 (2019). https://doi.org/10.1039/c9nj00212j

    Article  Google Scholar 

  26. Coral, D.F., Mendoza Zélis, P., Marciello, M., Morales, M.D.P., Craievich, A., Sánchez, F.H., Fernández Van Raap, M.B.: Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir 32, 1201–1213 (2016). https://doi.org/10.1021/acs.langmuir.5b03559

    Article  Google Scholar 

  27. Li, M., Gu, H., Zhang, C.: Highly sensitive magnetite nano clusters for MR cell imaging. Nanoscale Res. Lett. 7, 1–11 (2012). https://doi.org/10.1186/1556-276X-7-204

    Article  ADS  Google Scholar 

  28. Yang, P., Li, H., Zhang, S., Chen, L., Zhou, H., Tang, R., Zhou, T., Bao, F., Zhang, Q., He, L., Zhang, X.: Gram-scale synthesis of superparamagnetic Fe3O4 nanocrystal clusters with long-term charge stability for highly stable magnetically responsive photonic crystals. Nanoscale 8, 19036–19042 (2016). https://doi.org/10.1039/c6nr07155d

    Article  Google Scholar 

  29. El-Dek, S.I., Ali, M.A., El-Zanaty, S.M., Ahmed, S.E.: Comparative investigations on ferrite nanocomposites for magnetic hyperthermia applications. J. Magn. Magn. Mater. Magn. Magn. Mater. 458, 147–155 (2018). https://doi.org/10.1016/j.jmmm.2018.02.052

    Article  ADS  Google Scholar 

  30. Ati, A.A., Othaman, Z., Samavati, A.: Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J. Mol. Struct.Struct. 1052, 177–182 (2013). https://doi.org/10.1016/j.molstruc.2013.08.040

    Article  ADS  Google Scholar 

  31. Gopika, M.S., Lahiri, B.B., Anju, B., Philip, J., Pillai, S.S.: Magnetic hyperthermia studies in magnetite ferrofluids based on bio-friendly oils extracted from Calophyllum inophyllum, Brassica juncea, Ricinus communis and Madhuca longifolia. J. Magn. Magn. Mater. Magn. Magn. Mater. 537,(2021)

    Article  Google Scholar 

  32. Kumar, P., Pathak, S., Jain, K., Singh, A., Basheed, G.A., Pant, R.P.: Low-temperature large-scale hydrothermal synthesis of optically active PEG-200 capped single domain MnFe2O4 nanoparticles. J. Alloys Compd. 904, 163992 (2022). https://doi.org/10.1016/j.jallcom.2022.163992

    Article  Google Scholar 

  33. Oliveira-Filho, G.B., Atoche-Medrano, J.J., Aragón, F.F.H., Mantilla Ochoa, J.C., Pacheco-Salazar, D.G., da Silva, S.W., Coaquira, J.A.H.: Core-shell Au/Fe3O4 nanocomposite synthesized by thermal decomposition method: structural, optical, and magnetic properties. Appl. Surf. Sci. 563, 1–6 (2021). https://doi.org/10.1016/j.apsusc.2021.150290

    Article  Google Scholar 

  34. Kulandaivel, A., Jawaharlal, H.: Extensive analysis on the thermoelectric properties of aqueous Zn-doped nickel ferrite nanofluids for magnetically tuned thermoelectric applications. ACS Appl. Mater. Interfaces 14, 26833–26845 (2022). https://doi.org/10.1021/acsami.2c06457

    Article  Google Scholar 

  35. Irfan, H., Ezhil Vizhi, R.: Enhancement of the maximum energy product in Ba 0.5 Sr 0.5 Fe12O19/Y3Fe5O12 nanocomposites synthesized by the co-precipitation method. Nanotechnology 31, 404001 (2020)

    Article  Google Scholar 

  36. Bixner, O., Lassenberger, A., Baurecht, D., Reimhult, E.: Complete exchange of the hydrophobic dispersant shell on monodisperse superparamagnetic iron oxide nanoparticles. Langmuir 31, 9198–9204 (2015). https://doi.org/10.1021/acs.langmuir.5b01833

    Article  Google Scholar 

  37. Hadadian, Y., Masoomi, H., Dinari, A., Ryu, C., Hwang, S., Kim, S., Cho, B.K., Lee, J.Y., Yoon, J.: From low to high saturation magnetization in magnetite nanoparticles: the crucial role of the molar ratios between the chemicals. ACS Omega (2022). https://doi.org/10.1021/acsomega.2c01136

    Article  Google Scholar 

  38. Wulandari, A.D., Sutriyo, S., Rahmasari, R.: Synthesis conditions and characterization of superparamagnetic iron oxide nanoparticles with oleic acid stabilizer. J. Adv. Pharm. Technol. Res. 13, 89–94 (2022). https://doi.org/10.4103/japtr.japtr_246_21

    Article  Google Scholar 

  39. Scopel, E., Conti, P.P., Grando, D., Cleocir, S., Dalmaschio, J.: Synthesis of functionalized magnetite nanoparticles using only oleic acid and iron ( III ) acetylacetonate. SN Appl. Sci. 1, 1–8 (2019). https://doi.org/10.1007/s42452-018-0140-6

    Article  Google Scholar 

  40. Chen, M.J., Shen, H., Li, X., Ruan, J., Yuan, W.Q.: Magnetic fluids’ stability improved by oleic acid bilayer-coated structure via one-pot synthesis. Chem. Pap. 70, 1642–1648 (2016). https://doi.org/10.1515/chempap-2016-0096

    Article  Google Scholar 

  41. Ding, C., Huang, X., Zhang, H., Zhong, W., Xia, Y., Dai, C., Qin, Y., Zhu, J.: Self-assembled porous Fe3O4/C nanoclusters with superior rate capability for advanced lithium-ion batteries. J. Mater. Sci. Mater. Electron. 29, 6491–6500 (2018). https://doi.org/10.1007/s10854-018-8631-1

    Article  Google Scholar 

  42. Karthika, V., AlSalhi, M.S., Devanesan, S., Gopinath, K., Arumugam, A., Govindarajan, M.: Chitosan overlaid Fe3O4/rGO nanocomposite for targeted drug delivery, imaging, and biomedical applications. Sci. Rep. 10, 1–17 (2020). https://doi.org/10.1038/s41598-020-76015-3

    Article  Google Scholar 

  43. Meidanchi, A., Motamed, A.: Preparation, characterization and in vitro evaluation of magnesium ferrite superparamagnetic nanoparticles as a novel radiosensitizer of breast cancer cells. Ceram. Int. 46, 17577–17583 (2020). https://doi.org/10.1016/j.ceramint.2020.04.057

    Article  Google Scholar 

  44. Shahrousvand, M., Hoseinian, M.S., Ghollasi, M., Karbalaeimahdi, A., Salimi, A., Tabar, F.A.: Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: properties and cell behavior. Mater. Sci. Eng. C 74, 556–567 (2017). https://doi.org/10.1016/j.msec.2016.12.117

    Article  Google Scholar 

  45. Philip, A., Ruban Kumar, A.: Solvent effects on the drop cast films of few layers of MoS2 primed by facile exfoliation to realize optical and structural properties. Inorg. Chem. Commun.. Chem. Commun. 154, 110967 (2023). https://doi.org/10.1016/j.inoche.2023.110967

    Article  Google Scholar 

  46. Unni, M., Uhl, A.M., Savliwala, S., Savitzky, B.H., Dhavalikar, R., Garraud, N., Arnold, D.P., Kourkoutis, L.F., Andrew, J.S., Rinaldi, C.: Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11, 2284–2303 (2017). https://doi.org/10.1021/acsnano.7b00609

    Article  Google Scholar 

  47. Bianchetti, E., Di Valentin, C.: Effect of surface functionalization on the magnetization of Fe3O4 nanoparticles by hybrid density functional theory calculations. J. Phys. Chem. Lett. 13, 9348–9354 (2022). https://doi.org/10.1021/acs.jpclett.2c02186

    Article  Google Scholar 

  48. Shi, D., Sadat, M.E., Dunn, A.W., Mast, D.B.: Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 7, 8209–8232 (2015). https://doi.org/10.1039/c5nr01538c

    Article  ADS  Google Scholar 

  49. Singamaneni, S., Bliznyuk, V.N., Binek, C., Tsymbal, E.Y.: Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 21, 16819–16845 (2011). https://doi.org/10.1039/c1jm11845e

    Article  Google Scholar 

  50. Peddis, D., Cannas, C., Musinu, A., Ardu, A., F. Orrù, D. Fiorani, S. Laureti, D. Rinaldi, G. Muscas, G. Concas, G. Piccaluga,: Beyond the effect of particle size: influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem. Mater. 25, 2005–2013 (2013). https://doi.org/10.1021/cm303352r

    Article  Google Scholar 

  51. Wang, W., Tang, B., Wu, S., Gao, Z., Ju, B., Teng, X., Zhang, S.: Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe3O4 nanoclusters with tunable size. J. Magn. Magn. Mater. Magn. Magn. Mater. 423, 111–117 (2017). https://doi.org/10.1016/j.jmmm.2016.09.089

    Article  ADS  Google Scholar 

  52. Ranoo, S., Lahiri, B.B., Vinod, S., Philip, J.: Effect of initial susceptibility and relaxation dynamics on radio frequency alternating magnetic field induced heating in superparamagnetic nanoparticle dispersions. J. Magn. Magn. Mater. Magn. Magn. Mater. 486, 165267 (2019). https://doi.org/10.1016/j.jmmm.2019.165267

    Article  Google Scholar 

  53. Abu-Bakr, A.F., Zubarev, A.Y.: On the theory of magnetic hyperthermia: clusterization of nanoparticles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378 (2020). https://doi.org/10.1098/rsta.2019.0251

  54. Batlle, X., Pérez, N., Guardia, P., Iglesias, O., Labarta, A., Bartolomé, F., Garca, L.M., Bartolomé, J., Roca, A.G., Morales, M.P., Serna, C.J.: Magnetic nanoparticles with bulklike properties (invited). J. Appl. Phys. 109, 1–7 (2011). https://doi.org/10.1063/1.3559504

    Article  Google Scholar 

  55. von Helmolt, R., Wecker, J., Samwer, K.: Calculation of particle size from magnetization and resistance curves in giant magnetoresistive heterogeneous alloys. Phys. Status Solidi 182, K25–K29 (1994). https://doi.org/10.1002/pssb.2221820131

    Article  ADS  Google Scholar 

  56. Kumar, L., Kumar, P., Kar, M.: Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J. Alloys Compd. 551, 72–81 (2013). https://doi.org/10.1016/j.jallcom.2012.10.009

    Article  Google Scholar 

  57. Muscas, G., Yaacoub, N., Concas, G., Sayed, F., Sayed Hassan, R., Greneche, J.M., Cannas, C., Musinu, A., Foglietti, V., Casciardi, S., Sangregorio, C., Peddis, D.: Evolution of the magnetic structure with chemical composition in spinel iron oxide nanoparticles. Nanoscale 7, 13576–13585 (2015). https://doi.org/10.1039/c5nr02723c

    Article  ADS  Google Scholar 

  58. Devi, E.C., Soibam, I.: Law of approach to saturation in Mn – Zn ferrite nanoparticles. J. Supercond. Nov. Magn. 32, 1293–1298 (2018). https://doi.org/10.1007/s10948-018-4823-4

    Article  Google Scholar 

  59. Devi, E.C., Soibam, I.: Magnetic properties and law of approach to saturation in Mn-Ni mixed nanoferrites. J. Alloys Compd. 772, 920–924 (2019). https://doi.org/10.1016/j.jallcom.2018.09.160

    Article  Google Scholar 

  60. Craik, D.J.: Magnetization distributions and the approach to saturation. Philos. Mag. Part B. 41, 485–495 (1980). https://doi.org/10.1080/13642818008245402

    Article  ADS  Google Scholar 

  61. Herbst, J.F., Pinkerton, F.E.: Law of approach to saturation for polycrystalline ferromagnets: remanent initial state. Phys. Rev. B. 57, 733–739 (1998). https://doi.org/10.1103/PhysRevB.57.10733

    Article  Google Scholar 

  62. Brown, W.F.: Theory of the approach to magnetic saturation. Phys. Rev. 58, 736–743 (1940). https://doi.org/10.1103/PhysRev.58.736

    Article  ADS  Google Scholar 

  63. Zhang, H., Zeng, D., Liu, Z.: The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy. J. Magn. Magn. Mater. Magn. Magn. Mater. 322, 2375–2380 (2010). https://doi.org/10.1016/j.jmmm.2010.02.040

    Article  ADS  Google Scholar 

  64. Upadhyay, S., Parekh, K., Pandey, B.: Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. J. Alloys Compd. 678, 478–485 (2016). https://doi.org/10.1016/j.jallcom.2016.03.279

    Article  Google Scholar 

  65. Pashchenko, A.V., Liedienov, N.A., Fesych, I.V., Li, Q., Pitsyuga, V.G., Turchenko, V.A., Pogrebnyak, V.G., Liu, B., Levchenko, G.G.: Smart magnetic nanopowder based on the manganite perovskite for local hyperthermia. RSC Adv. 10, 30907–30916 (2020). https://doi.org/10.1039/d0ra06779b

    Article  ADS  Google Scholar 

  66. Almutary, A., Sanderson, B.J.S.: The MTT and crystal violet assays: potential confounders in nanoparticle toxicity testing. Int. J. Toxicol.Toxicol. 35, 454–462 (2016). https://doi.org/10.1177/1091581816648906

    Article  Google Scholar 

  67. Meenachi, P., Subashini, R., Lakshminarayanan, A.K., Gupta, G.: Comparative study of the biocompatibility and corrosion behaviour of pure Mg, Mg Ni/Ti, and Mg 0.4Ce/ZnO2 nanocomposites for orthopaedic implant applications. Mater. Res. Express. 10, 13 (2023). https://doi.org/10.1088/2053-1591/acd0a4

    Article  Google Scholar 

  68. Kharey, P., Goel, M., Husain, Z., Gupta, R., Sharma, D., M, M., Palani, I.A., Gupta, S.: Green synthesis of biocompatible superparamagnetic iron oxide-gold composite nanoparticles for magnetic resonance imaging, hyperthermia and photothermal therapeutic applications. Mater. Chem. Phys. 293, 126859 (2023)

    Article  Google Scholar 

  69. Kouchesfehani, H.M., Kiani, S., Rostami, A.A., Fakheri, R.: Cytotoxic effect of iron oxide nanoparticles on mouse embryonic stem cells by MTT assay. Iran. J. Toxicol. 7, 849–853 (2013)

    Google Scholar 

  70. Lotfi, S., Ghaderi, F., Bahari, A., Mahjoub, S.: Preparation and characterization of magnetite–chitosan nanoparticles and evaluation of their cytotoxicity effects on MCF7 and fibroblast cells. J. Supercond. Nov. Magn.Supercond. Nov. Magn. 30, 3431–3438 (2017). https://doi.org/10.1007/s10948-017-4094-5

    Article  Google Scholar 

Download references

Acknowledgements

K. Rekha and R. Ezhil Vizhi express their gratitude to the management of the Vellore Institute of Technology in Vellore, Tamil Nadu, India, for their ongoing assistance and the characterisation facilities provided. The authors express their gratitude to Dr. M Anbalagan and Arjitha, for the cytotoxicity studies. The authors also express their gratitude to NRC SRM University and IITM SAIF for providing the VSM measurements.

Author information

Authors and Affiliations

Authors

Contributions

K. R: Investigation-Synthesis, Investigation-Magnetic, structural, and morphological characterization, Writing-Original draft preparation. R.E.V: Writing-Review & amp;editing, Supervision.

Corresponding author

Correspondence to R. Ezhil Vizhi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekha, K., Vizhi, R.E. Temperature Effects on the Structural, Morphological, and Magnetic Properties of Iron Oxide Nanoclusters Using Solvothermal Method. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06726-5

Keywords

Navigation