Skip to main content
Log in

Ferroelectric and Ferromagnetic Properties in Flexible (Gd, Mn) Co-doping BiFeO3 Thin Film

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Flexible thin film with both good ferroelectric and ferromagnetic properties has more extensive applications in the field of flexible and/or wearable devices and sensors. In this experiment, the flexible Bi0.9Gd0.1Fe0.98Mn0.02O3 (BGFMO) thin film is successfully deposited on fluorophlogopite (F-Mica) single-crystalline substrate by sol–gel method. The flexible BGFMO thin film exhibits a rhombohedrally distorted perovskite structure, uniform grain size, and a relatively smooth surface. It has good ferroelectricity, with a remnant polarization (Pr) value of 74.88 μC/cm2 and ferromagnetism with anisotropic saturation magnetization (in-plane saturation magnetization of about 32.00 emu/cm3, out-of-plane saturation magnetization of about 29.80 emu/cm3). The flexible thin film can maintain good ferroelectric properties at different frequencies and temperatures, and the ferroelectric properties can be adjusted by mechanical bending. Therefore, the flexible BGFMO thin film with excellent ferroelectric and ferromagnetic properties has great application potential in flexible electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data included in this manuscript are available with the corresponding author and can be accessed upon reasonable request.

References

  1. Liang, H., Zhang, L., Wu, T., Song, H., Tang, C.: Dual-mode flexible sensor based on PVDF/MXene nanosheet/reduced graphene oxide composites for electronic skin. Nanomaterials 13(1), 102 (2023)

    Article  Google Scholar 

  2. Lu, Y., Wu, T., Ma, Z., Mi, Y., Zhao, Z., Liu, F., Cao, X., Wang, N.: Integration of flexible supercapacitors with triboelectric nanogenerators: a review. Batteries 9(5), 281 (2023)

    Article  Google Scholar 

  3. Wang, X.W., Liang, Y.F., Sun, L.Y., Guo, S.Q., Yin, S.Q.: Effects of Mn doping on ferroelectric, ferromagnetic and optical properties of BiFeO3 thin films. Physica B 594, 412317 (2020)

    Article  Google Scholar 

  4. Tan, X., Sun, X., Jiang, J., Chen, D.: Improved polarization retention in epitaxial BiFeO3 thin films induced by strain relaxation. Appl. Surf. Sci. 635,(2023)

  5. Ruby, S., S.S.R.: Inbanathan, Structural properties and electrical conduction mechanisms of Bi0.9Sm0.05Tb0.05FeO3 Thin Film, Appl. Surf. Sci. 449, 10–14 (2018)

  6. Liang, X.L., Dai, J.Q., Zhang, C.C.: Effect of (Zn, Mn) co-doping on the structure and ferroelectric properties of BiFeO3 thin films. Ceram. Int. 48, 6347–6355 (2022)

    Article  Google Scholar 

  7. Bhushan, B., Wang, Z., Tol, J., Dalal, N.S., Basumallick, A., Vasanthacharya, N.Y., Kumar, S., Das, D.: Tailoring the magnetic and optical characteristics of nanocrystalline BiFeO3 by Ce doping. J. Am. Ceram. Soc. 95(6), 1985–1992 (2012)

    Article  Google Scholar 

  8. Chen, L.X., Xu, C., Fan, X.L., Cao, X.H., Ji, K., Yang, C.H.: Study on leakage current, ferroelectric and dielectric properties of BFMO thin films with different bismuth contents. J. Mater. Sci-Mater. El. 30, 7704–7710 (2019)

    Article  Google Scholar 

  9. Liang, X.L., Dai, J.Q., Zhang, G.D.: Great ferroelectric properties and narrow bandgaps of BiFeO3 thin films by (Mg, Mn) modifying. Appl. Surf. Sci. 586, 152751 (2022)

    Article  Google Scholar 

  10. Jin, L.H., Tang, X.W., Song, D.P., Wei, R.H., Yang, J., Dai, J.M., Song, W.H., Zhu, X.B., Sun, Y.P.: Annealing temperature effects on (111)-oriented BiFeO3 thin films deposited on Pt/Ti/SiO2/Si by chemical solution deposition. J. Mater. Chem. C. 3, 10742 (2015)

    Article  Google Scholar 

  11. Chai, Z.J., Tan G., Yue, Z.W., Xue, M., Liu, Y., Lv, L., Ren, H.J., Xia, A.: Structural transition, defect complexes and improved ferroelectric behaviors of Bi0.88Sr0.03Gd0.09Fe0.94Mn0.04Co0.02O3/Co1-xMnxFe2O4 bilayer thin films, Ceram. Int. 44, 15770–15777 (2018)

  12. Qian, F.Z., Jiang, J.S., Guo, S.Z., Jiang, D.M., Zhang, W.G.: Multiferroic properties of Bi1-xDyxFeO3 nanoparticles. J. Appl. Phys. 106(8), 084312 (2009)

    Article  ADS  Google Scholar 

  13. Cheng, Z.X., Wang, X.L., Dou, S.X., Kimura, H., Ozawa, K.: Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb codoping. Phys. Rev. B 77, 092101 (2008)

    Article  ADS  Google Scholar 

  14. Uchida, H., Ueno, R., Funakubo, H., Koda, S.: Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. J. Appl. Phys. 100, 014106 (2006)

    Article  ADS  Google Scholar 

  15. Lahmar, A., Habouti, S., Dietze, M., Solterbeck, C.H., Es-Souni, M.: Effects of rare earth manganites on structural, ferroelectric, and magnetic properties of BiFeO3 thin films. Appl. Phys. Lett. 94, 012903 (2009)

    Article  ADS  Google Scholar 

  16. Li, D., Sun, X., Chuan, X., Wu Z., Cao, Z., Yan, Y., Zhang, D.: Enhanced ferro- and piezoelectric properties of a sol-gel derived BiFe0.95Mn0.05O3 thin film on Bi2O3 buffered Pt/Ti/SiO2/Si substrate, J. Cryst. Growth 338, 85–90 (2012)

  17. Ren, X.X., Tan, G.Q., Liu, J., Li, J.C., Xue, M.T., Ren, H.J., Xia, A., Liu, W.L., Liu, Y.: Oxygen vacancy and grain boundary resistance regulate the intrinsic ferroelectric properties of Bi0.96Sr0.04Fe0.98-xMnxCo0.02O3 thin film, J. Eur. Ceram. Soc. 40, 5431–5440 (2020)

  18. Zhu, X.P., Shi, P., Lou, X.J., Gao, Y.F., Guo, X.D., Sun, H.N., Liu, Q.D., Ren, Z.j.: Ren, Remarkably enhanced energy storage properties of lead-free Ba0.53Sr0.47TiO3 thin films capacitors by optimizing bottom electrode thickness, J. Eur. Ceram. Soc. 40(15), 5475–5482 (2020)

  19. Yang, B., Li, C., Liu, M.: Design of flexible inorganic BiFe0.93Mn0.07O3 ferroelectric thin films for nonvolatile memory, J. Materiomics 6, 600–606 (2020)

  20. Estandia, S., Gazquez, J., Varela, M., Dix N., Sanchez, F.: Critical effect of bottom electrode on the ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films, J. Mater. Chem. C 9, 3486–3492 (2021)

  21. Kharel, P., Talebi, S., Ramachandran, B., Dixit, A., Naik, V.M., Sahana, M.B., Sudakar, C., Naik, R., Rao, M.S.R., Lawes, G.: Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J. Phys-Condens. Mat. 21, 036001 (2009)

    Article  ADS  Google Scholar 

  22. Liu, W., Ao, D., Liu, C., Wang, X., Dong, S., Ren, H., Xia, A., Tan, G.: Tan, Anisotropic saturation magnetization in flexible BiFe0.95Cr0.05O3/BiFe0.95Mn0.05O3 superlattice thin films by sol-gel, Micro Nanostructures 166, 207230 (2022)

  23. Pooladia, M., Sharifib, I., Behzadipour, M.: A review of the structure, magnetic and electrical properties of bismuth ferrite (Bi2Fe4O9). Ceram. Int. 46, 18453–18463 (2020)

    Article  Google Scholar 

  24. Long, L., Guo, K., Huang, J., Zhang, M., Deng, C., Wang, X.: Regulation of multiferroicity in BiFe1-xCrxO3 thin films fabricated employing sol-gel process. J Mater. Sci-Mater. El. 33, 11308–11317 (2022)

    Article  Google Scholar 

  25. Jin, L., Liu, M., Li, C., Song, D., Yang, B., Zhu, X.: Evolution of structure and electrical properties of epitaxial BiFeO3 thin films through solution and annealing atmosphere. J. Alloy. Compd. 843, 155910 (2020)

    Article  Google Scholar 

  26. Jeudy, V., Mougin, A., Bustingorry, S., Torres, W.S., Gorchon, J., Kolton, A.B., Lemaître, A., Jamet, J.P.: Universal pinning energy barrier for driven domain walls in thin ferromagnetic films. Phys. Rev. Lett. 117, 57201 (2016)

    Article  ADS  Google Scholar 

  27. Pan, T., Chou, Y., Her, J.: Impact of Yb content on structural properties and ferroelectric characteristics of BiFeO3 thin films on Pt/TiN/Si substrates. Appl. Phys. A-Mate. 128, 503 (2022)

    Article  ADS  Google Scholar 

  28. Schenk, T., Yurchuk, E., Mueller, S.: About the deformation of ferroelectric hystereses. Appl. Phys. Rev. 1(4), 041103 (2014)

    Article  ADS  Google Scholar 

  29. Cai, W., Fu, C., Lin, Z.: Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics. Ceram. Int. 37(8), 3643–3650 (2011)

    Article  Google Scholar 

  30. Deka, B., Cho, K.H.: BiFeO3-based relaxor ferroelectrics for energy storage: progress and prospects. Materials 14, 7188 (2021)

    Article  ADS  Google Scholar 

  31. Lee, H., Guo, E.J., Min, T., Hwang, S., Lee, S., Dorr, K., Lee, J., Jo, J.: In situ observation of atomic movement in a ferroelectric film under an external electric field and stress. Nano Res. 11(7), 3824–3832 (2018)

    Article  Google Scholar 

  32. Szafraniak, I., Połomska, M., Hilczer, B., Pietraszko, A., Kępiński, L.: Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis. J. Eur. Ceram. Soc. 27, 4399–4402 (2007)

    Article  Google Scholar 

  33. Mumtaz, F., Jaffari, G.H., Shah, S.I.: Peculiar magnetism in Eu substituted BiFeO3 and its correlation with local structure. J. Phys-Condens. Mat. 30, 435802 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52002235 and 52002236). It was also partially supported by Doctoral Scientific Research Startup Foundation of Shaanxi University of Science and Technology (No. 2019BJ-30).

Author information

Authors and Affiliations

Authors

Contributions

Wenlong Liu: and Shuxian Liu wrote the main manuscript text. Di Li prepared figures 1-3. Jin Zong prepared figures 5-6. Guoqiang Tan reviewed the manuscript. Qibin Yuan prepared figure 4. Dinghan Liu provided support in data processing. Ao Xia prepared figure 7. Huijun Ren reviewed the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Wenlong Liu or Guoqiang Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Liu, S., Li, D. et al. Ferroelectric and Ferromagnetic Properties in Flexible (Gd, Mn) Co-doping BiFeO3 Thin Film. J Supercond Nov Magn 37, 799–806 (2024). https://doi.org/10.1007/s10948-024-06723-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06723-8

Keywords

Navigation