Skip to main content
Log in

Structural, Morphological, and Magnetic Properties of Fe2+-Substituted Mn Ferrite Nanoparticles for Biomedical Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Fe2+-doped manganese ferrite (Mn1−xFexFe2O4, where x = 0, 0.1, 0.2, 0.4, and 0.6) nanoparticles were synthesized using the co-precipitation method. The structural, morphological, and magnetic properties of the nanoparticles were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy analysis (FESEM), and the vibration sample magnetometer (VSM). The crystallite size and lattice parameter of the samples decreased by increasing the Fe2+-doping concentrations. FESEM study showed the formation of highly agglomerated and isotropic nanoparticles with doping. VSM data revealed the superparamagnetic behavior of nanoparticles with doping. A variation in the saturation magnetization was found; this is directly proportional to the amount of doping for x > 0.2. Low-temperature magnetization studies were carried out at 5 K, revealing an increase in the value of magnetization as well as coercivity due to the freezing of magnetic moments. These results revealedthat the synthesized nanoparticle has different particle sizes and magnetic properties. These nanoparticles have the potential to use in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Gao, L., Liu, Z., Yang, Z., Cao, L., Feng, C., Chu, M., Tang, J.: Synthesis and magnetism property of manganese ferrite MnFe2O4 by selective reduction and oxidization roasting process. Appl. Surf. Sci. 508, 145292 (2020)

    Article  Google Scholar 

  2. Akhlaghi, N., Najafpour-Darzi, G.: Manganese ferrite (MnFe2O4) nanoparticles: from synthesis to application-a review. J. Ind. Eng. Chem. 103, 292–304 (2021)

    Article  Google Scholar 

  3. Verma, M., Kumar, A., Singh, K.P., Kumar, R., Kumar, V., Srivastava, C.M., et al.: Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: one-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium. J. Mol. Liq. 315, 113769 (2020)

    Article  Google Scholar 

  4. Prado, L.D.L., Hernández, D.C., Bocardo, J.E., López, G.H.: Influence of the heat treatment conditions on the properties of gallium-strontium-substituted manganese ferrites designed for magnetic hyperthermia applications. Ceram. Int. 47(5), 7069–7080 (2021)

    Article  Google Scholar 

  5. Díez-Villares, S., Ramos-Docampo, M.A., da Silva-Candal, A., et al.: Manganese ferrite nanoparticles encapsulated into vitamin E/Sphingomyelin nanoemulsions as contrast agents for high-sensitive magnetic resonance imaging. Adv. Healthcare Mater. 10(21), 2101019 (2021)

    Article  Google Scholar 

  6. Li, Y.K., Cheng, L., Zhang, X.D., Guo, X.: Hierarchically-structured MnFe2O4 nanospheres for highly sensitive detection of NO2. Solid State Ion. 336, 102–109 (2019)

    Article  Google Scholar 

  7. Gürbüz, M.U., Elmacı, G., Ertürk, A.S.: In situ deposition of silver nanoparticles on polydopamine-coated manganese ferrite nanoparticles: synthesis, characterization, and application to the degradation of organic dye pollutants as an efficient magnetically recyclable nanocatalyst. Appl. Organomet. Chem. 35(8), e6284 (2021)

    Article  Google Scholar 

  8. Nonaka, L.H., Almeida, T.S., Aquino, C.B., Domingues, S.H., Salvatierra, R., Souza, V.H.: Crumpled graphene decorated with manganese ferrite nanoparticles for hydrogen peroxide sensing and electrochemical supercapacitors. ACS Appl. Nano Mater. 3(5), 4859–4869 (2020)

  9. Xiao, Y., Du, J.: Superparamagnetic nanoparticles for biomedical applications. J. Mater. Chem. B 8(3), 354–367 (2020)

    Article  Google Scholar 

  10. Islam, K., Haque, M., Kumar, A., et al.: Manganese ferrite nanoparticles (MnFe2O4): size dependence for hyperthermia and negative/positive contrast enhancement in MRI. Nanomaterials 10, 2297 (2020)

    Article  Google Scholar 

  11. Kittel, C.: Introduction to Solid State Physics, Wiley, 7th edition (1995)

  12. Carta, D., Casula, M.F., Mountjoy, G., et al.: Formation and cation distribution in supported manganese ferrite nanoparticles: an X-ray absorption study. Phys. Chem. Chem. Phys. 10, 3108–3117 (2008)

    Article  Google Scholar 

  13. Arshad, M., Asghar, M., Junaid, M., Warsi, M.F., et al.: Structural and magnetic properties variation of manganese ferrites via Co-Ni substitution. J. Magn. Magn. Mater. 474, 98–103 (2019)

    Article  ADS  Google Scholar 

  14. Rezaei, M., Mirkazemi, S.M., Alamolhoda, S.: The role of PVA surfactant on magnetic properties of MnFe2O4 nanoparticles synthesized by sol-gel hydrothermal method. J. Supercond. Nov. Magn. 34, 1397–1408 (2021)

    Article  Google Scholar 

  15. Liu, G., Dai, B., Ren, Y., Zhang, W.: Rapid synthesis and characterization of spinel manganese ferrite nanopowder by microwave-assisted hydrothermal method. Results Phys. 26, (2021)

  16. Yousuf, M.A., Baig, M.M., Waseem, M., et al.: Low cost micro-emulsion route synthesis of Cr-substituted MnFe2O4 nanoparticles. Ceram. Int. 45, 22316–22323 (2019)

    Article  Google Scholar 

  17. Singh, G., Sudeshna Chandra, S.: Electrochemical performance of MnFe2O4 nano-ferrites synthesized using thermal decomposition method. Int. J. Hydrog. Energy 43, 4058–4066 (2018)

    Google Scholar 

  18. Almahri, A.: The solid-state synthetic performance of bentonite stacked manganese ferrite nanoparticles: adsorption and photo-Fenton degradation of MB dye and antibacterial applications. J. Market. Res. 17, 2935–2949 (2022)

    Google Scholar 

  19. Debnath, S., Deb, K., Saha, B., et al.: X-ray diffraction analysis for the determination of elastic properties of zinc-doped manganese spinel ferrite nanocrystals (Mn0.75Zn0.25Fe2O4), along with the determination of ionic radii, bond lengths, and hopping lengths. J. Phys. Chem. Solids 134, 105–114 (2019)

  20. Kumar, D.R., Lincoln, C.A., Ravinder, D., et al.: Structural, morphological, luminescence, magnetic, and electrical transport properties of zinc-doped MnFe2O4 nanomaterials. Appl. Phys. A 126, 705 (2020)

    Article  ADS  Google Scholar 

  21. Noor, A., Akhtar, M.N., Khan, S.N., et al.: Synthesis, morphological and electromagnetic evaluations of Ca doped Mn spinel nanoferrites for GHz regime applications. Ceram. Int. 46, 13961–13968 (2020)

    Article  Google Scholar 

  22. Naik, A.B., Naik, P.P., Hasolkar, S.S., et al.: Structural, magnetic and electrical properties along with antifungal activity & adsorption ability of cobalt doped manganese ferrite nanoparticles synthesized using combustion route. Ceram. Int. 46, 21046–21055 (2020)

    Article  Google Scholar 

  23. Deshmukh, V.V, Nagaswarupa, H.P., Raghavendra, N.: Development of Co-doped MnFe2O4 nanoparticles for electrochemical supercapacitors. Ceram. Int. 46, 10268–10273 (2021)

  24. Sun, Y., Zhou, J., Dan Liu, D., et al.: Enhanced catalytic performance of Cu-doped MnFe2O4 magnetic ferrites: tetracycline hydrochloride attacked by superoxide radicals efficiently in a strong alkaline environment. Chemosphere 297, 134154 (2022)

    Article  ADS  Google Scholar 

  25. Al-Mokdad, F., Sayed Hassan, R., Awad, R.: Physical and dielectric properties of MnFe2O4 doped by Mo. Curr. Nanomater. 4, 125–136 (2019)

    Article  Google Scholar 

  26. Sinha, A., Abhigyan Dutta, A.: Structural, optical, and electrical transport properties of some rare-earth- doped nickel ferrites: a study on effect of ionic radii of dopants. J. Phys. Chem. Solids 145, 109534 (2020)

  27. Karaagac, O., Köçkar, H.: The effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method. J. Mater. Sci. Mater. Electron. 31, 2567–2574 (2020)

    Article  Google Scholar 

  28. Patterson, L.: The Scherrer formula for X-Ray particle size determination. Phys. Rev. 56, 979–982 (1939)

    Article  MATH  ADS  Google Scholar 

  29. Jain, R., Luthra, V., Gokhale, G.: Probing influence of rare earth ions (Er3+, Dy3+ and Gd3+) on structural, magnetic and optical properties of magnetite nanoparticles. J. Magn. Magn. Mater. 456, 179–185 (2018)

    Article  ADS  Google Scholar 

  30. Ikram, S., Jacob, J., Mehboob, K., et al.: Role of rare earth metal ions doping on structural, electrical, magnetic, and dielectric behavior of spinel ferrites: a comparative study. J. Supercond. Nov. Magn. 34, 1833–1842 (2021)

    Article  Google Scholar 

  31. Ghosh, M.P., Sharma, S., Harendra Kumar Satyapal, H.K., et al.: Tuning the microstructural, optical and superexchange interactions with rare earth Eu doping in nickel ferrite nanoparticles. Mater. Chem. Phys. 241, 122383 (2020)

  32. Can, Wu., C., Xu, Y., Xu, S., et al.: Enhanced adsorption of arsenate by spinel zinc ferrite nano particles: effect of zinc content and site occupation. J. Environ. Sci. 79, 248–255 (2019)

    Article  Google Scholar 

  33. Nakai, T., Toba, K., Yamamoto, H., et al.: Creep and stress relaxation behaviour for natural cellulose crystal of wood cell wall under uniaxial tensile stress in the fiber direction. J. Wood Sci. 64, 745–750 (2018)

    Article  Google Scholar 

  34. Anita Luthra, V.: Tweaking electrical and magnetic properties of Al–Ni co-doped ZnO nanopowders. Ceram. Int. 40, 14927–14932 (2014)

  35. Rueden, C. T., Schindelin, J., Hiner, M.C., et al.: ImageJ2: ImageJ for the next generation of scientific image data. Rueden et al. BMC Bioinformat. 18, 529 (2017)

  36. Sharma, R., Thakur, P., Kumar, M., et al.: Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg-Zn ferrites as a heating source in hyperthermia applications. Ceram. Int. 43, 13661–13669 (2017)

    Article  Google Scholar 

  37. Ansari, M.M.N., Khan, S., Ahmad, N.: Effect of R3+ (R = Pr, Nd, Eu and Gd) substitution on the structural, electrical, magnetic and optical properties of Mn-ferrite nanoparticles. J. Magn. Magn. Mater. 465, 81–87 (2018)

    Article  ADS  Google Scholar 

  38. Kombaiah, K., Vijaya, J.J., Kennedy, L.J., et al.: A green approach: synthesis, characterization and opto-magnetic properties of MgxMn1−xFe2O4 spinel nanoparticles. J. Mater. Sci. Mater. Electron. 28, 10321–10329 (2017)

    Article  Google Scholar 

  39. Kadam, A.B., Mande, V.K., Kadam, S.B., et al.: Influence of gadolinium (Gd3+) ion substitution on structural, magnetic, and electrical properties of cobalt ferrites. J. Alloy. Compd. 840, 55669 (2020)

    Article  Google Scholar 

  40. Anu, K., Hemalatha, J.: Magnetic and electrical conductivity studies of zinc doped cobalt ferrite nanofluids. J. Mol. Liq. 284, 445–453 (2019)

    Article  Google Scholar 

  41. Moyer, J.A., Vaz, C.A.F., Arena, D.A., et al.: Magnetic structure of Fe-doped CoFe2O4 probed by x-ray magnetic spectroscopies. Phys. Rev. B 84, 054447 (2011)

    Article  ADS  Google Scholar 

  42. Panda, R.K., Muduli, R., Jayarao, G., et al.: Effect of Cr3+ substitution on electric and magnetic properties of cobalt ferrite nanoparticles. J. Alloy. Compd. 669, 19–28 (2016)

    Article  Google Scholar 

  43. Jain, R., Luthra, V., Gokhale, S.: Dysprosium doping induced shape and magnetic anisotropy of Fe3-xDyxO4 (x=0.01–0.1) nanoparticles. J. Magn. Magn. Mater. 414, 111–115 (2016)

  44. Abraime, B., Mahmoud, A. , Boschini, F., et al.: Tunable maximum energy product in CoFe2O4 nanopowder for permanent magnet application. J. Magn. Magn. Mater. 467, 129–134.40 (2018)

  45. Icten, O., Erdem Tundemir, B., Tuncdemir, Mergen, H.: Design and development of gold-loaded and boron-attached multicore manganese ferrite nanoparticles as a potential agent in biomedical applications. ACS Omega 7, 20195–20203 (2022)

  46. Batoo, K.M., Raslan, E.H., Yang, Y., et al.: Structural, dielectric and low temperature magnetic response of Zn doped cobalt ferrite nanoparticles. AIP Adv. 9, 055202 (2019)

    Article  ADS  Google Scholar 

  47. Abdellatif-Youssef, M., Etter, M., Fromme, P., et al.: Extended properties of magnetic spins of zinc ferrite nanoparticles in the THz frequency range. J. Magn. Magn. Mater. 525, 167574 (2021)

    Article  Google Scholar 

  48. Aslibeiki, B.: Nanostructural, magnetic and electrical properties of Ag doped Mn-ferrite nanoparticles. Curr. Appl. Phys. 14, 1659–1664 (2014)

  49. Poudel, T.P., Rai, B.K., Yoon, S., et al.: The effect of gadolinium substitution in inverse spinel nickel ferrite: structural, magnetic, and Mössbauer study. J. Alloy. Compd. 802, 609–619 (2019)

    Article  Google Scholar 

  50. Kozlovskiy, A.L., Zdorovets, M.V.: Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2–0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater. Chem. Phys. 263, 124444 (2021)

  51. Zeb, F., Shoaib Khan, M., Nadeem, K., et al.: Reduced surface spin disorder in ZrO2 coated γ-Fe2O3 nanoparticles. Solid State Commun. 284–286, 69–74 (2018)

    Article  ADS  Google Scholar 

  52. Abraime, B., Mahmoud, A., Boschini, F., et al.: Tunable maximum energy product in CoFe2O4 nanopowder for permanent magnet application. J. Magn. Magn. Mater. 467, 129–134 (2018)

    Article  ADS  Google Scholar 

  53. Noshahi, N.A., Nadeem, K., Kamran, M.: Role of Mn doping on magnetic properties of multiferroic NiCr2O4 nanoparticles. Ceram. Int. 47, 10643–10649 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Sudha Gulati: conceptualization, synthesis, analysis, and review. Dr. Richa Jain: investigation, analysis, writing, and editing.

Corresponding author

Correspondence to Richa Jain.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulati, S., Jain, R. Structural, Morphological, and Magnetic Properties of Fe2+-Substituted Mn Ferrite Nanoparticles for Biomedical Applications. J Supercond Nov Magn 36, 1373–1383 (2023). https://doi.org/10.1007/s10948-023-06570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06570-z

Keywords

Navigation