Skip to main content
Log in

Preparation and Properties of FeGa/AlN Magnetoelectric Device with Typical Topological Structures

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, the mask method is applied to design a variety of topological structures in the magnetic layer. Different topological Mo/FeGa/AlN magnetoelectric (ME) devices were fabricated. Controlling the stress conduction mode between the magnetostrictive phase and the piezoelectric phase is one of the goals that enables the coexistence of normal stress and shear stress. In order to improve the ME performance of devices, the second purpose is to induce the ME anisotropy of devices through the magnetostrictive anisotropy caused by the topological structure. The circular topological Mo/FeGa/AlN devices produce the largest ME coupling coefficient along the length direction (7071 mV/cm Oe), which is 1.84 times higher than that of the planar devices (3853 mV/cm Oe). The maximum ME anisotropy coefficient (4.612) is determined from the strip topology ME device, which is 2.45 times higher than that of the planar device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or used during the study appear in the submitted article.

References

  1. Lee, K.M., Thomas, D., Kim, S.H., et al.: Studies of electrical polarization fatigue in SrBi2Ta2O9 thin films. MRS Online Proceeding Library Archive (1998). https://doi.org/10.1557/PROC-541-241

  2. Vopsaroiu, M., Blackburn, J., Muniz-Piniella, A., Cain, M.G.: Multiferroic magnetic recording read head technology for 1Tbit/in.2 and beyond. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2832345

    Article  Google Scholar 

  3. Wang, Y., Hu, J., Lin, Y., Nan, C.-W.: Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. (2010). https://doi.org/10.1038/asiamat.2010.32

    Article  Google Scholar 

  4. Palneedi, H., Annapureddy, V., Lee, H.-Y., et al.: Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT-BCT single crystals. J. Asian Ceram. Soc. (2018). https://doi.org/10.1016/j.jascer.2016.12.005

    Article  Google Scholar 

  5. Kirchhof, C., Krantz, M., Teliban, I., et al.: Giant magnetoelectric effect in vacuum. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4810750

    Article  Google Scholar 

  6. Strnad, N.A., Hanrahan, B.M., Potrepka, D.M., Pulskamp, J.S., Phaneuf, R.J., Polcawich, R.G.: Growth of thin film ferroelectric PZT, PHT, and antiferroelectric PHO from atomic layer deposition precursors. J. Am. Ceram. Soc. (2020). https://doi.org/10.1111/jace.17521

    Article  Google Scholar 

  7. Zhang, S., Zhan, Q., Yu, Y., et al.: Surface morphology and magnetic property of wrinkled FeGa thin films fabricated on elastic polydimethylsiloxane. Appl. Phys. Lett. (2016). https://doi.org/10.1063/1.4943943

    Article  Google Scholar 

  8. Liu, H., Lin, X., Zhang, S., Huan, Y., Huang, S., Cheng, X.: Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J. Mater. Chem. A (2020). https://doi.org/10.1039/d0ta03054f

    Article  Google Scholar 

  9. Park, K.I., Son, J.H., Hwang, G.T., et al.: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. (2014). https://doi.org/10.1002/adma.201305659

    Article  Google Scholar 

  10. Taniguichi, D., Kusaka, K., Hanabusa, T., Tominaga, K.: Effect of input power on crystal orientation and residual stress in AlN film deposited by dc sputtering. Vacuum (2000). https://doi.org/10.1016/S0042-207X(00)00351-1

    Article  Google Scholar 

  11. Benetti, M.: D Cannat`a, FD Pietrantonio, E Verona: Growth of AlN piezoelectric film on diamond for high-frequency surface acoustic wave devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2005). https://doi.org/10.1109/TUFFC.2005.1561635

    Article  Google Scholar 

  12. Annapureddy, V., Na, S.-M., Hwang, G.-T., et al.: Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics. Energy Environ. Sci. (2018). https://doi.org/10.1039/c7ee03429f

    Article  Google Scholar 

  13. Su, J., Niekiel, F., Fichtner, S., et al.: Frequency tunable resonant magnetoelectric sensors for the detection of weak magnetic field. J. Micromech. Microeng. (2020). https://doi.org/10.1088/1361-6439/ab8dd0

    Article  Google Scholar 

  14. Peterson, D.T., Verhoeven, J.D., McMasters, O.D., Spitzig, W.A.: Strength of Terfenol-D. J. Appl. Phys. (1989). https://doi.org/10.1063/1.342599

    Article  Google Scholar 

  15. Ryu, J., Priya, S.: AVz Carazo, K Uchino: Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate Titanate/Terfenol-D laminate composites. J. Am. Ceram. Soc. (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01113.x

    Article  Google Scholar 

  16. Srisukhumbowornchai, N., Guruswamy, S.: Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J. Appl. Phys. (2001). https://doi.org/10.1063/1.1412840

    Article  Google Scholar 

  17. Acosta, A., Fitzell, K., Schneider, J.D., et al.: Enhancing the soft magnetic properties of FeGa with a non-magnetic underlayer for microwave applications. Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0007603

    Article  Google Scholar 

  18. Wang, Q., Li, X., Liang, C.-Y., et al.: Strain-mediated 180° switching in CoFeB and Terfenol-D nanodots with perpendicular magnetic anisotropy. Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4978270

    Article  Google Scholar 

  19. Palneedi, H., Na, S.-M., Hwang, G.-T., et al.: Highly tunable magnetoelectric response in dimensional gradient laminate composites of Fe-Ga alloy and Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 single crystal. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.05.122

    Article  Google Scholar 

  20. De Lacheisserie, E.D.T., Peuzin, J.C.: Magnetostriction and internal stresses in thin films: the cantilever method revisited. J. Magn. Magn. Mater. (1994). https://doi.org/10.1016/0304-8853(94)90464-2

    Article  Google Scholar 

  21. Hattrick-Simpers, J.R., Hunter, D., Craciunescu, C.M., et al.: Combinatorial investigation of magnetostriction in Fe-Ga and Fe-Ga-Al. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2980034

    Article  Google Scholar 

  22. Alex, H., Rudolf, S.: Magnetic domains: the analysis of magnetic microstructures. Springer Berlin, Heidelberg (1998). https://doi.org/10.1007/978-3-540-85054-0

  23. Barturen, M., Sander, D., Milano, J., et al.: Bulklike behavior of magnetoelasticity in epitaxial Fe1−xGax thin films. Phys. Rev. B (2019). https://doi.org/10.1103/PhysRevB.99.134432

    Article  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (FRF-GF-19-028B) and the State Key Laboratory for Advanced Metals and Materials (2018Z-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, F., Wu, T. et al. Preparation and Properties of FeGa/AlN Magnetoelectric Device with Typical Topological Structures. J Supercond Nov Magn 36, 1025–1032 (2023). https://doi.org/10.1007/s10948-023-06539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06539-y

Keywords

Navigation