Skip to main content
Log in

In-field Performance Comparison and Vortex Pinning Analysis in Depth of Pristine and BaHfO3-Doped Y0.5Gd0.5Ba2Cu3O7-δ Films in Different Temperature Regions

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Pristine Y0.5Gd0.5Ba2Cu3O7-δ films and Y0.5Gd0.5Ba2Cu3O7-δ films with additional 1 mol% and 3 mol% BaHfO3 secondary phases were fabricated on a CeO2 layer, and the microstructure and superconducting properties in the liquid helium, hydrogen, and nitrogen temperature regions were compared. BaHfO3 dopants exist in the form of nanorods and cause lengthening of the Y0.5Gd0.5Ba2Cu3O7-δ c-axis lattice and degradation of the texture due to the strain field, which, in turn, reduces the critical temperature and self-field critical current density. The field and temperature dependences of the transport characteristics were investigated in an applied magnetic field normal to the film by up to 9 T. The fitting on the normalized pinning force density shows effective modulation in the flux creep by doping BaHfO3 over a wide temperature range, which is more significant with increasing doping concentrations. The analysis of the pinning contribution weight confirmed enhancement of the strong pinning by the BaHfO3 nanorods over the entire temperature range, which further explained the weakened attenuation of the current transport capacity in the BaHfO3-doped films with an increasing field. The angular dependence measurement at 77.3 K showed that the BaHfO3 nanorods along the c-axis effectively consolidated the pinning ability approaching the main growth orientation, which leads to improved in-field Jc anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bednorz, J.G., Mueller, K.A.Z.: Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B: Condens. Matter 64, 189–193 (1986). https://doi.org/10.1007/BF01303701

    Article  ADS  Google Scholar 

  2. Senatore, C., Barth, C., Bonura, M., Kulich, M., Mondonico, G.: Field and temperature scaling of the critical current density in commercial REBCO coated conductors. Supercond. Sci. Technol. 29, 014002 (2016). https://doi.org/10.1088/0953-2048/29/1/014002

    Article  ADS  Google Scholar 

  3. Selvamanickam, V., Heydari Gharahcheshmeh, M., Xu, A., Galstyan, E., Delgado, L.J., Cantoni, C.: High critical currents in heavily doped (Gd, Y)Ba2Cu3Ox superconductor. Appl. Phys. Lett. 106, 032601 (2015). https://doi.org/10.1063/1.4906205

    Article  ADS  Google Scholar 

  4. Mulder, T., Weiss, J., Van Der Laan, D.C., Dhalle, M., Kate, H.T.: Development of ReBCO-CORC wires with current densities of 400 to 600 A/mm2 at 10 T and 4.2 K. IEEE Trans. Appl. Supercon. 28, 4800504 (2017). https://doi.org/10.1109/TASC.2017.2774362

  5. Kar, S., Sandra, J.S., Luo, W.B., Kochat, M., Jaroszynski, J., Abraimov, D., Majkic, G., Selvamanickam, V.: Next-generation highly flexible round REBCO STAR wires with over 580 A mm−2 at 4.2 K, 20 T for future compact magnets. Supercond. Sci. Technol. 32, 10LT01 (2019). https://doi.org/10.1088/1361-6668/ab3904

  6. Pi, W., Ma, S.W., Kang, Q.Q., Liu, Z.Q., Meng, Y.R., S., Wang, Y.: Study on mechanical oroperties of quasi-isotropic superconducting strand stacked by 2-mm-wide REBCO and copper tapes. IEEE Trans. Appl. Supercon. 30, 6600105 (2020). https://doi.org/10.1109/TASC.2020.2968041

  7. Tixador, P., Bauer, M., Bruzek, C.E., Calleja, A., Deutscher, G., Dutoit, B., Gomory, F., Martini, L., Noe, M., Obradors, X., Pekarcíková, M., Sirois, F.: Status of the european union project FASTGRID. IEEE Trans. Appl. Supercon. 29, 5603305 (2019). https://doi.org/10.1109/TASC.2019.2908586

    Article  Google Scholar 

  8. Kang, S., Goyal, A., Li, J., Gapud, A.A., Martin, P.M., Heatherly, L., Thompson, J.R., Christen, D.K., List, F.A., Paranthaman, M., Lee, D.F.: High-performance high-Tc superconducting wires. Science 311, 1911–1914 (2006). https://doi.org/10.1126/science.1124872

    Article  ADS  Google Scholar 

  9. Goldacker, W., Grilli, F., Pardo, E., Kario, A., Schlachter, S.I., Vojenčiak, M.: Roebel cables from REBCO coated conductors: a one-century-old concept for the superconductivity of the future. Supercond. Sci. Technol. 27, 093001 (2014). https://doi.org/10.1088/0953-2048/27/9/093001

    Article  ADS  Google Scholar 

  10. Hellmann, S., Abplanalp, M., Elschner, S., Kudymow, A., Noe, M.: Current limitation experiments on a 1 MVA-class superconducting current limiting transformer. IEEE Trans. Appl. Supercon. 29, 5501706 (2019). https://doi.org/10.1109/tasc.2019.2906804

    Article  Google Scholar 

  11. Nakamura, F., Iwakuma, M., Miura, S., Yoshida, T., Tomioka, A., Konno, M.: Numerical analysis of current-limiting cooperation of a 20 MVA superconducting transformer and cable. IEEE Trans. Appl. Supercon. 29, 5502105 (2019). https://doi.org/10.1109/TASC.2019.2909236

    Article  Google Scholar 

  12. Búran, M., Vojenčiak, M., Mošať, M., Ghabeli, A., Solovyov, M., Pekarčíková, M., Kopera, Ľ, Gömöry, F.: Impact of a REBCO coated conductor stabilization layer on the fault current limiting functionality. Supercond. Sci. Technol. 32, 095008 (2019). https://doi.org/10.1088/1361-6668/ab2c8e

    Article  ADS  Google Scholar 

  13. Zhai, Y.H., van der Laan, D., Connolly, P., Kessel, C.: Conceptual design of HTS magnets for fusion nuclear science facility. Fusion Eng. Des. 168, 112611 (2021). https://doi.org/10.1016/j.fusengdes.2021.112611

    Article  Google Scholar 

  14. Bascunan, J., Hahn, S., Lecrevisse, T., Song, J. B., Miyagi, D., Iwasa, Y.: An 800 MHz all GdBCO insert for the 1.3 GHz LTS/HTS NMR magnet program - a progress report. IEEE Trans. Appl. Supercon. 26, 4300205 (2016). https://doi.org/10.1109/TASC.2015.2512045

  15. Tsui, Y., Surrey, E., Hampshire, D.: Soldered joints - an essential component of demountable high temperature superconducting fusion magnets. Supercond. Sci. Technol. 29, 075005 (2016). https://doi.org/10.1088/0953-2048/29/7/075005

    Article  ADS  Google Scholar 

  16. Tsukamoto, O.: Roads for HTS power applications to go into the real world. Cryogenics 45, 3–10 (2005). https://doi.org/10.1016/j.cryogenics.2004.06.008

    Article  ADS  Google Scholar 

  17. Larbalestier, D.C., Gurevich, A., Feldmann, D.M., Polyanskii, A.: High-Tc superconducting materials for electric power applications. Nature 414, 368–377 (2001). https://doi.org/10.1038/35104654

    Article  ADS  Google Scholar 

  18. Xu, A., Delgado, L.J., Khatri, N., Liu, Y.K., Selvamanickam, V., Abraimov, D., Jaroszynski, J., Kametani, F., Larbalestier, D.C.: Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd,Y)-Ba-Cu-O superconducting tapes. APL Mater. 2, 046111 (2014). https://doi.org/10.1063/1.4872060

  19. Majkic, G., Pratap, R., Galstyan, E., Selvamanickam, V.: Correlation of in-field performance of thick REBCO films between 0–14 T and 4.2–77 K. IEEE Trans. Appl. Supercon. 29, 6602005 (2019). https://doi.org/10.1109/TASC.2019.2906425

  20. van der Laan, D.C., Noyes, P.D., Miller, G.E., Weijers, H.W., Willering, G.P.: Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T. Supercond. Sci. Technol. 26, 045005 (2013). https://doi.org/10.1088/0953-2048/26/4/045005

    Article  ADS  Google Scholar 

  21. Matsumoto, K., Mele, P.: Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond. Sci. Technol. 23, 014001 (2010). https://doi.org/10.1088/0953-2048/23/1/014001

    Article  ADS  Google Scholar 

  22. Miura, M., Kato, T., Yoshizumi, M., Yamada, Y., Izumi, T., Shiohara, Y., Hirayama, T.: Enhancement of flux pinning in Y1-xSmxBa1.5Cu3Oy coated conductors with nanoparticles. Appl. Phys. Express. 1, 051701 (2008). https://doi.org/10.1143/apex.1.051701

  23. Liu, L.F., Wang, W., Yao, Y.J., Wu, X., Lu, S.D., Li, Y.J.: Formation of qualified BaHfO3 doped Y0.5Gd0.5Ba2Cu3O7−δ film on CeO2 buffered IBAD-MgO tape by self-seeding pulsed laser deposition. Appl. Surf. Sci. 439, 1034–1039 (2018). https://doi.org/10.1016/j.apsusc.2018.01.037

  24. Yoshida, Y., Ichino, Y., Ozaki, T., Funaki, S., Takai, Y., Matsumoto, K., Ichinose, A., Horii, S., Mukaida, M., Kita, R.: Improved flux pinning in nanostructured REBCO films controlling the APC growth mechanism. IEEE Trans. Appl. Supercon. 19, 3262–3265 (2009). https://doi.org/10.1109/TASC.2009.2018737

    Article  ADS  Google Scholar 

  25. Matsushita, T., Nagamizu, H., Tanabe, K., Kiuchi, M., Otabe, E.S., Tobita, H., Yoshizumi, M., Izumi, T., Shiohara, Y., Yokoe, D., Kato, T., Hirayama, T.: Improvement of flux pinning performance at high magnetic fields in GdBa2Cu3Oy coated conductors with BHO nano-rods through enhancement of Bc2. Supercond. Sci. Technol. 25, 125003 (2012). https://doi.org/10.1088/0953-2048/25/12/125003

    Article  Google Scholar 

  26. Kobayashi, N., Kita, R., Miura, O.: Improvement of flux pinning properties for hafnium-doped Gd123 thin films fabricated by a fluorine-free MOD method. IEEE Trans. Appl. Supercon. 27, 801104 (2017). https://doi.org/10.1109/TASC.2017.2655886

    Article  Google Scholar 

  27. Birlik, I., Erbe, M., Freudenberg, T., Celik, E., Schultz, L., Holzapfel, B.: Flux pinning improvement of YBCO superconducting films with BaZrO3 nanoparticles prepared by chemical solution deposition method. J. Phys. Conf. Ser. 234, 012004 (2010). https://doi.org/10.1088/1742-6596/234/1/012004

    Article  Google Scholar 

  28. Petrisor, T., Mos, R.B., Nasui, M., Gabor, M.S., Augieri, A., Celentano, G., Felicis, D.D., Bemporad, E., Ciontea, L., Petrisor, T.: The vortex path model analysis of the field angle dependence of the critical current density in nanocomposite YBa2Cu3O7−x–BaZrO3 films obtained by low fluorine chemical solution deposition. J. Supercond. Nov. Magn. 27, 2493–2500 (2014). https://doi.org/10.1007/s10948-014-2712-z

    Article  Google Scholar 

  29. Rijckaert, H., Hänisch, J., Pollefeyt, G., Bäcker, M., Van Driessche, I.: Influence of Ba2+ consumption and intermediate dwelling during processing of YBa2Cu3O7 nanocomposite films. J. Am. Ceram. Soc. 102, 3870–3878 (2018). https://doi.org/10.1111/jace.16228

    Article  Google Scholar 

  30. Tsuchiya, Y., Tajiri, S., Ichino, Y., Ichinose, A., Yoshida, Y.: Flux pinning properties in Y2BaCuO5-doped YBa2Cu3Oy films fabricated with vapor-liquid-solid growth method. J. Jpn. Inst. Met. 83, 335–340 (2019). https://doi.org/10.2320/jinstmet.JA201905

    Article  Google Scholar 

  31. Zhou, Y.X., Ghalsasi, S., Rusakova, I., Salama, K.: Flux pinning in MOD YBCO films by chemical doping. Supercond. Sci. Technol. 20, S147–S154 (2007). https://doi.org/10.1088/0953-2048/20/9/s06

    Article  ADS  Google Scholar 

  32. Crescio, E., Gerbaldo, R., Ghigo, G., Gozzelino, L.: Interplay between as grown defects and heavy ion induced defects in YBCO films. Int. J. Mod Phys B 13, 1177–1182 (1999). https://doi.org/10.1142/S0217979299001144

    Article  ADS  Google Scholar 

  33. Mazilu, A., Safar, H., Maley, M.P., Coulter, J.Y., Bulaevskii, L.N., Foltyn, S.: Vortex dynamics of heavy-ion-irradiated YBa2Cu3O7-δ: experimental evidence for a reduced vortex mobility at the matching field. Phys. Rev. B 58, R8909–R8912 (1998). https://doi.org/10.1103/PhysRevB.58.R8909

    Article  ADS  Google Scholar 

  34. Paulius, L.M., Fendrich, J.A., Kwok, W.K., Koshelev, A., Vinokur, V.M., Crabtree, G.W., Glagola, B.G.: Effects of 1-GeV uranium ion irradiation on vortex pinning in single crystals of the high-temperature superconductor YBa2Cu3O7-δ. Phys. Rev. B 56, 913–924 (1997). https://doi.org/10.1103/PhysRevB.56.913

    Article  ADS  Google Scholar 

  35. Civale, L., Marwick, A.D., Worthington, T.K., Kirk, M.A., Thompson, J.R., Krusin-Elbaum, L., Sun, Y., Clem, J.R., Holtzberg, F.: Vortex confinement by columnar defects in YBa2Cu3O7 crystals: enhanced pinning at high fields and temperatures. Phys. Rev. Lett. 67, 648–651 (1991). https://doi.org/10.1103/PhysRevLett.67.648

    Article  ADS  Google Scholar 

  36. Civale, L.: Vortex pinning and creep in high-temperature superconductors with columnar defects. Supercond. Sci. Technol. 10, A11–A28 (1999). https://doi.org/10.1088/0953-2048/10/7A/003

    Article  ADS  Google Scholar 

  37. Wu, J., Gautam, B., Sebastian, M.A., Ogunjimi, V., Misra, S., Huang, J.J., Baca, J., Prestigiacomo, J., Haugan, T.J., Wang, H.Y., Osofsky, M.: Pinning efficiency of one-dimensional artificial pinning centers in YBa2Cu3O7-x thin films. IEEE Trans. Appl. Supercon. 29, 8001105 (2019). https://doi.org/10.1109/TASC.2019.2895739

    Article  Google Scholar 

  38. Rizzo, F., Augieri, A., Kursumovic, A., Bianchetti, M., Opherden, L., Sieger, M., Huhne, R., Hanisch, J., Meledin, A., van Tendeloo, G., MacManus-Driscoll, J.L., Celentano, G.: Pushing the limits of applicability of REBCO coated conductor films through fine chemical tuning and nanoengineering of inclusions. Nanoscale 10, 8187–8195 (2018). https://doi.org/10.1039/c7nr09428k

    Article  Google Scholar 

  39. Horide, T., Kawamura, T., Matsumoto, K., Ichinose, A., Yoshizumi, M., Izumi, T., Shiohara, Y.: Jc improvement by double artificial pinning centers of BaSnO3 nanorods and Y2O3 nanoparticles in YBa2Cu3O7 coated conductors. Supercond. Sci. Technol. 26, 075019 (2013). https://doi.org/10.1088/0953-2048/26/7/075019

    Article  ADS  Google Scholar 

  40. Jha, A.K., Matsumoto, K., Horide, T., Saini, S., Mele, P., Ichinose, A., Yoshida, Y., Awaji, S.: Tailoring the vortex pinning strength of YBCO thin films by systematic incorporation of hybrid artificial pinning centers. Supercond. Sci. Technol. 28, 114004 (2015). https://doi.org/10.1088/0953-2048/28/11/114004

    Article  ADS  Google Scholar 

  41. Kusafuka, Y., Ichino, Y., Tsuchiya, Y., Ichinose, A., Yoshida, Y.: Superconducting properties and microstructures for Ba2SmNbO6 and BaHfO3 co-doped SmBa2Cu3Oy thin films. Supercond. Sci. Technol. 30, 125008 (2017). https://doi.org/10.1088/1361-6668/aa9241

    Article  ADS  Google Scholar 

  42. Mele, P., Matsumoto, K., Horide, T., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., Kita, R.: Incorporation of double artificial pinning centers in YBa2Cu3O7−d films. Supercond. Sci. Technol. 21, 015019 (2008). https://doi.org/10.1088/0953-2048/21/01/015019

    Article  ADS  Google Scholar 

  43. Heydari Gharahcheshmeh, M., Galstyan, E., Kukunuru, J., Katta, R., Majkic, G., Li, X.F., Selvamanickam, V.: MOCVD of heavily-doped 25 mol.% Zr-added (Gd,Y)Ba2Cu3O7-δ coated conductors. IEEE Trans. Appl. Supercon. 27, 6602905 (2017). https://doi.org/10.1109/TASC.2017.2660768

  44. Heydari Gharahcheshmeh, M., Majkic, G., Galstyan, E., Xu, A.X., Zhang, Y., Li, X.F., Selvamanickam, V.: Control of in-field performance of 25 mol.% Zr-added REBCO superconductor tapes. Physica. C. 553, 26–32 (2018). https://doi.org/10.1016/j.physc.2018.07.004

  45. Aslanoğlu, Z., Akın, Y., Kawni, M., Arda, L., Sigmund, W., Hascicek, Y.S.: Silver doped YBCO coated conductor development by sol-gel process. IEEE Trans. Appl. Supercon. 13, 2755–2757 (2003). https://doi.org/10.1109/TASC.2003.811995

    Article  ADS  Google Scholar 

  46. Jacob, M., Mazierska, J.E., Kim, J., Kang, K.Y.: Microwave and microstructural studies of silver-doped YBa2Cu3O7-δ thin films. Supercond. Sci. Technol. 11, 1217–1221 (1999). https://doi.org/10.1088/0953-2048/11/11/004

    Article  ADS  Google Scholar 

  47. Salamati, H., Brojeny, A.B., Safa, M.: Investigation of weak links and the role of silver addition on YBCO superconductors. Supercond. Sci. Technol. 14, 816–819 (2001). https://doi.org/10.1088/0953-2048/14/10/302

    Article  ADS  Google Scholar 

  48. Drotbohm, P., Abeles, R., Russell, G.J., Bailey, A., Alvarez, G., Taylor, K.N.R.: Low frequency (5 MHz) impedance measurements of isolated and weakly-coupled thick film YBCO microstriplines. Appl. Supercond. 1, 1043–1053 (1993). https://doi.org/10.1016/0964-1807(93)90411-T

    Article  Google Scholar 

  49. Horide, T., Matsumoto, K., Adachi, H., Takahara, D., Osamura, K., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S.: Evaluation of metallic nanoparticles in REBa2Cu3O7−δ (RE = Y, Gd) thin films by small angle X-ray scattering. Physica C 445–448, 652–655 (2006). https://doi.org/10.1016/j.physc.2006.04.061

    Article  ADS  Google Scholar 

  50. Stilp, E., Suter, A., Prokscha, T., Salman, Z., Morenzoni, E., Keller, H., Katzer, C., Schmidl, F., Döbeli, M.: Modifications of the Meissner screening profile in YBa2Cu3O7−δ thin films by gold nanoparticles. Phys. Rev. B 89, 020510 (2014). https://doi.org/10.1103/PhysRevB.89.020510

    Article  ADS  Google Scholar 

  51. Hannachi, E., Slimani, Y., Okasha, A.T., Yasin, G., Iqbal, M., Shariq, M., Kaya, D., Ben Azzouz, F., Ekicibil, A.: YBCO superconductor added with one-dimensional TiO2 nanostructures: frequency dependencies of AC susceptibility, FC-ZFC magnetization, and pseudo-gap studies. J. Alloys Compd. 883, 160887 (2021). https://doi.org/10.1016/j.jallcom.2021.160887

    Article  Google Scholar 

  52. Slimani, Y., Hannachi, E., Ekicibil, A., Almessiere, M.A., Ben Azzouz, F.: Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloys Compd. 781, 664–673 (2019). https://doi.org/10.1016/j.jallcom.2018.12.062

  53. Hannachi, E., Slimani, Y., Ekicibil, A., Manikandan, A., Ben Azzouz, F.: Excess conductivity and AC susceptibility studies of Y-123 superconductor added with TiO2 nano-wires. Mater. Chem. Phys. 235, 121721 (2019). https://doi.org/10.1016/j.matchemphys.2019.121721

    Article  Google Scholar 

  54. Yamada, Y., Takahashi, K., Kobayashi, H., Konishi, M., Watanabe, T., Ibi, A., Muroga, T., Miyata, S., Kato, T., Hirayama, T., Shiohara, Y.: Epitaxial nanostructure and defects effective for pinning in Y(RE)Ba2Cu3O7-x coated conductors. Appl. Phys. Lett. 87, 132502 (2005). https://doi.org/10.1063/1.2061874

    Article  ADS  Google Scholar 

  55. Mele, P., Matsumoto, K., Horide, T., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S.: Enhanced high-field performance in PLD films fabricated by ablation of YSZ-added YBa2Cu3O7−x target. Supercond. Sci. Technol. 20, 244–250 (2007). https://doi.org/10.1088/0953-2048/20/3/023

    Article  ADS  Google Scholar 

  56. Takahashi, K., Kobayashi, H., Yamada, Y., Ibi, A., Fukushima, H., Konishi, M., Miyata, S., Shiohara, Y., Kato, T., Hirayama, T.: Investigation of thick PLD-GdBCO and ZrO2 doped GdBCO coated conductors with high critical current on PLD-CeO2 capped IBAD-GZO substrate tapes. Supercond. Sci. Technol. 19, 924–929 (2006). https://doi.org/10.1088/0953-2048/19/9/007

    Article  ADS  Google Scholar 

  57. Cui, X.M., Tao, B.W., Tian, Z., Xiong, J., Zhang, X.F., Li, Y.R.: Enhancement of flux pinning of TFA-MOD YBCO thin films by embedded nanoscale Y2O3. Supercond. Sci. Technol. 19, 844–847 (2006). https://doi.org/10.1088/0953-2048/19/8/027

    Article  ADS  Google Scholar 

  58. Mele, P., Guzman, R., Gazquez, J., Puig, T., Obradors, X., Saini, S., Yoshida, Y., Mukaida, M., Ichinose, A., Matsumoto, K., Idries Adam, M.: High pinning performance of YBa2Cu3O7−x films added with Y2O3 nanoparticulate defects. Supercond. Sci. Technol. 28, 024002 (2015). https://doi.org/10.1088/0953-2048/28/2/024002

    Article  ADS  Google Scholar 

  59. Mele, P., Matsumoto, K., Horide, T., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S.: Insertion of nanoparticulate artificial pinning centres in YBa2Cu3O7−x films by laser ablation of a Y2O3-surface modified target. Supercond. Sci. Technol. 20, 616–620 (2007). https://doi.org/10.1088/0953-2048/20/7/006

    Article  ADS  Google Scholar 

  60. Varanasi, C.V., Burke, J., Brunke, L., Wang, H., Sumption, M., Barnes, P.N.: Enhancement and angular dependence of transport critical current density in pulsed laser deposited YBa2Cu3O7−x+BaSnO3 films in applied magnetic fields. J. Appl. Phys. 102, 063909 (2007). https://doi.org/10.1063/1.2783783

    Article  ADS  Google Scholar 

  61. Mele, P., Matsumoto, K., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., Kita, R.: Systematic study of BaSnO3 doped YBa2Cu3O7−x films. Physica C 469, 1380–1383 (2009). https://doi.org/10.1016/j.physc.2009.05.080

    Article  ADS  Google Scholar 

  62. Mele, P., Matsumoto, K., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., Kita, R.: Systematic study of the BaSnO3 insertion effect on the properties of YBa2Cu3O7−x films prepared by pulsed laser ablation. Supercond. Sci. Technol. 21, 125017 (2008). https://doi.org/10.1088/0953-2048/21/12/125017

    Article  ADS  Google Scholar 

  63. Liu, M., Shi, D.Q., Li, Q., Wang, L., Ye, S., Suo, H.L., Dou, S.X.: YBCO films doping with SZO particles grown by chemical solution deposition. Int. J. Mod Phys B 23, 3532–3537 (2009). https://doi.org/10.1142/S021797920906292X

    Article  ADS  Google Scholar 

  64. Boubeche, M., Li, M. J., Liu, X.M., Shi, C., Lui, Z.Y., Bai, C.Y., Guo, Y.Q., Cai, C.B.: Enhanced pinning properties of the bilayers of YDy0.5Ba2Cu3O7−δ by SrZrO3 nanoparticles through low fluorine metallorganic solution deposition. J. Supercond. Nov. Magn. 31, 2321–2327 (2017). https://doi.org/10.1007/s10948-017-4511-9

  65. Sinclair, J.W., Zuev, Y.L., Cantoni, C., Wee, S.H., Varanasi, C., Thompson, J.R., Christen, D.K.: Matching field effects at tesla-level magnetic fields in critical current density in high-Tc superconductors containing self-assembled columnar defects. Supercond. Sci. Technol. 25, 115003 (2012). https://doi.org/10.1088/0953-2048/25/11/115003

    Article  ADS  Google Scholar 

  66. Tsuruta, A., Yoshida, Y., Ichino, Y., Ichinose, A., Watanabe, S., Horide, T., Matsumoto, K., Awaji, S.: Effect of BaHfO3 introduction on the transport current at the grain boundaries in SmBa2Cu3Oy films. Appl. Phys. Express 8, 033101 (2015). https://doi.org/10.7567/apex.8.033101

    Article  ADS  Google Scholar 

  67. Miura, S., Tsuchiya, Y., Yoshida, Y., Ichino, Y., Awaji, S., Matsumoto, K., Ibi, A., Izumi, T., Iwakuma, M.: Improved flux pinning for high-field applications in BaHfO3-doped SmBa2Cu3Oy-coated conductors with high density of random pinning centers induced by BaHfO3 nanorods. IEEE Trans. Appl. Supercon. 28, 8000606 (2018). https://doi.org/10.1109/TASC.2018.2804667

    Article  Google Scholar 

  68. Miura, S., Yoshida, Y., Ichino, Y., Matsumoto, K., Ichinose, A., Awaji, S.: Flux pinning properties of a SmBa2Cu3Oy film including high number density of BaHfO3 nano-rods on LaAlO3 substrate. J. Supercond. Nov. Magn. 28, 367–369 (2014). https://doi.org/10.1007/s10948-014-2754-2

    Article  Google Scholar 

  69. Iida, K., Cayado, P., Rijckaert, H., Erbe, M., Hänisch, J., Okada, T., van Driessche, I., Awaji, S., Holzapfel, B.: Pinning analyses of a BaHfO3-containing GdBa2Cu3O7-δ thin film grown by chemical solution deposition. Supercond. Sci. Technol. 34, 015009 (2020). https://doi.org/10.1088/1361-6668/abb205

    Article  ADS  Google Scholar 

  70. Tobita, H., Notoh, K., Higashikawa, K., Inoue, M., Kiss, T., Kato, T., Hirayama, T., Yoshizumi, M., Izumi, T., Shiohara, Y.: Fabrication of BaHfO3 doped Gd1Ba2Cu3O7−δ coated conductors with the high Ic of 85 A/cm-w under 3 T at liquid nitrogen temperature (77 K). Supercond. Sci. Technol. 25, 062002 (2012). https://doi.org/10.1088/0953-2048/25/6/062002

    Article  ADS  Google Scholar 

  71. Miura, S., Yoshida, Y., Ichino, Y., Matsumoto, K., Ichinose, A., Awaji, S.: Characteristics of high-performance BaHfO3-doped SmBa2Cu3Oy superconducting films fabricated with a seed layer and low-temperature growth. Supercond. Sci. Technol. 28, 065013 (2015). https://doi.org/10.1088/0953-2048/28/6/065013

    Article  ADS  Google Scholar 

  72. Pahlke, P., Lao, M., Eisterer, M., Meledin, A., van Tendeloo, G., Hänisch, J., Sieger, M., Usoskin, A., Stromer, J., Holzapfel, B., Schultz, L., Hühne, R.: Reduced Jc anisotropy and enhanced in-field performance of thick BaHfO3-doped YBa2Cu3O7-δ films on ABAD-YSZ templates. IEEE Trans. Appl. Supercon. 26, 6603104 (2016). https://doi.org/10.1109/TASC.2016.2541998

    Article  Google Scholar 

  73. Awaji, S., Tsuchiya, Y., Miura, S., Ichino, Y., Yoshida, Y., Matsumoto, K.: C-axis correlated pinning mechanism in vortex liquid and solid phases for Sm123 film with well-aligned BaHfO3 nanorods. Supercond. Sci. Technol. 30, 114005 (2017). https://doi.org/10.1088/1361-6668/aa8d10

    Article  ADS  Google Scholar 

  74. Cai, C., Holzapfel, B., Hänisch, J., Fernández, L., Schultz, L.: High critical current density and its field dependence in mixed rare earth (Nd, Eu, Gd)Ba2Cu3O7−δ thin films. Appl. Phys. Lett. 84, 377–379 (2003). https://doi.org/10.1063/1.1640802

    Article  ADS  Google Scholar 

  75. Ghalsasi, S.V., Zhou, Y.X., Rusakova, I., Sun, Y.Y., Salama, K.: Enhancement of current carrying capability in MOD-processed YBCO films using chemical doping. IEEE Trans. Appl. Supercon. 17, 3343–3346 (2007). https://doi.org/10.1109/TASC.2007.898871

    Article  ADS  Google Scholar 

  76. Gao, B., Cai, C.B., Liu, Z.Y., Liu, J.L., Ying, L.L., Cao, S.X., Zhang, J.C., Thersleff, T., Hühne, R., Holzapfel, B.: Single and binary rare earth REBa2Cu3O7-delta films prepared by chemical solution deposition. J. Phys. Conf. Ser. 97, 012245 (2008). https://doi.org/10.1088/1742-6596/97/1/012245

    Article  Google Scholar 

  77. lLi, Y., Cui, L.J., Cao, G.H., Ma, Q.Z., Tang, C.G., Wang, Y.B., Wei, L., Zhang, Y.Z., Zhao, Z.X., Baggio-Saitovitch, E.: Positron annihilation study on the stress-field pinning mechanism in (Eu,Y)-123 superconductors. Physica, C. 314, 55–68 (1999). https://doi.org/10.1016/S0921-4534(99)00150-1

  78. MacManus-Driscoll, J.L., Maiorov, B., Durrell, J., Foltyn, S., Jia, Q.X., Civale, L., Wang, H., Kursumovic, A., Peterson, D.E.: Guidelines for optimizing random and correlated pinning in rare-earth-based superconducting films. Supercond. Sci. Technol. 19, S55–S59 (2006). https://doi.org/10.1088/0953-2048/19/3/008

    Article  ADS  Google Scholar 

  79. Honda, R., Ichino, Y., Yoshida, Y., Takai, Y., Matsumoto, K., Ichinose, A., Kita, R., Mukaida, M., Horii, S.: Effect of substituted rare earth element in (Yb1−xNdx)Ba2Cu3Oy thin film on growth orientation and superconducting properties. Physica C 426–431, 1005–1009 (2005). https://doi.org/10.1016/j.physc.2005.06.004

    Article  ADS  Google Scholar 

  80. Kitoh, Y., Matsuda, J., Suzuki, K., Teranishi, R., Nakaoka, K., Aoki, Y., Fuji, H., Yajima, A., Yamada, Y., Izumi, T., Shiohara, Y.: Fabrication of Y1−xRExBa2Cu3Oy films on single crystalline substrates and IBAD buffered metallic tapes by advanced TFA-MOD process. Physica C 445–448, 558–562 (2006). https://doi.org/10.1016/j.physc.2006.04.049

    Article  ADS  Google Scholar 

  81. Devi, A.R., Bai, V.S., Patanjali, P.V., Pinto, R., Kumar, N.H., Malik, S.K.: Enhanced critical current density due to flux pinning from lattice defects in pulsed laser ablated Y1-xDyxBa2Cu3O7-δ thin films. Supercond. Sci. Technol. 13, 935–939 (2000). https://doi.org/10.1088/0953-2048/13/7/305

    Article  ADS  Google Scholar 

  82. MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Peterson, D.E.: Systematic enhancement of in-field critical current density with rare-earth ion size variance in superconducting rare-earth barium cuprate films. Appl. Phys. Lett. 84, 5329–5331 (2004). https://doi.org/10.1063/1.1766394

  83. Miura, M., Kato, T., Yoshizumi, M., Yamada, Y., Izumi, T., Hirayama, T., Shiohara, Y.: Rare earth substitution effects and magnetic field dependence of critical current in Y1-xRExBa2Cu3Oy coated conductors with nanoparticles (RE = Sm, Gd). Appl. Phys. Express 2, 023002 (2009). https://doi.org/10.1143/apex.2.023002

    Article  ADS  Google Scholar 

  84. Ye, J.C., Liu, L.F., Liu, S.F., Mou, S.J., Li, Y.J.: Preparing pure c-axis oriented SrTiO3 film on CeO2 film by introducing a nano-Y0.5Gd0.5Ba2Cu3O7-δ layer. Ceram. Int. 46, 21989–21994 (2020). https://doi.org/10.1016/j.ceramint.2020.05.141

  85. Ye, J.C., Mou, S.J., Zhu, R.J., Liu, L.F., Li, Y.J.: Orientation competition growth and mechanism of SrTiO3 film on CeO2 layer. Vacuum 194, 110626 (2021). https://doi.org/10.1016/j.vacuum.2021.110626

    Article  ADS  Google Scholar 

  86. Rao, C.N.R., Nagarajan, R., Vijayaraghaven, R.: Synthesis of cuprate superconductors. Supercond. Sci. Technol. 6, 1–22 (1993). https://doi.org/10.1088/0953-2048/6/1/001

    Article  ADS  Google Scholar 

  87. Yao, Y.J., Liu, L.F., Wu, X., Wang, B.B., Lu, S.D., Wang, W., Li, Y.J.: In-field superconducting critical current of Y0.5Gd0.5Ba2Cu3O7-σ films obtained by a multi-step deposition process. Ceram. Int. 43, 13524–13529 (2017). https://doi.org/10.1016/j.ceramint.2017.07.058

  88. Watanabe, T., Iwai, H., Ibi, A., Muroga, T., Miyata, S., Yamada, Y., Shiohara, Y., Kato, T., Hirayama, T.: Investigation of multi-deposition for high Ic YBCO coated conductors prepared by PLD on self-epitaxial CeO2 buffers. IEEE Trans. Appl. Supercon. 15, 2620–2623 (2005). https://doi.org/10.1109/TASC.2005.847683

    Article  ADS  Google Scholar 

  89. Ibi, A., Iwai, H., Takahashi, K., Muroga, T.: Investigations of thick YBCO coated conductor with high critical current using IBAD-PLD method. Physica C 426–431, 910–914 (2005). https://doi.org/10.1016/j.physc.2005.02.083

    Article  ADS  Google Scholar 

  90. Lin, J.X., Liu, X.M., Cui, C.W., Bai, C.Y., Lu, Y.M., Fan, F., Guo, Y.Q., Liu, Z.Y., Cai, C.B.: A review of thickness-induced evolutions of microstructure and superconducting performance of REBa2Cu3O7−δ coated conductor. Adv. Manuf. 5, 165–176 (2017). https://doi.org/10.1007/s40436-017-0173-x

    Article  Google Scholar 

  91. Foltyn, S.R., Jia, Q.X., Arendt, P.N., Kinder, L.: Relationship between film thickness and the critical current of YBa2Cu3O7-δ coated conductors. Appl. Phys. Lett. 75, 3692–3694 (2000). https://doi.org/10.1063/1.125431

    Article  ADS  Google Scholar 

  92. Foltyn, S.R., Tiwari, P., Dye, R.C., Le, M.Q., Wu, X.D.: Pulsed laser deposition of thick YBa2Cu3O7−δ films with Jc ≥1 MA/cm2. Appl. Phys. Lett. 63, 1848–1850 (1993). https://doi.org/10.1063/1.110653

    Article  ADS  Google Scholar 

  93. Kato, T., Sasaki, H., Sasaki, Y., Hirayama, T., Ikuhara, Y., Watanabe, T., Ibi, A., Iwai, H., Muroga, T., Miyata, S., Yamada, Y., Iijima, Y., Kakimoto, K., Sutoh, Y., Saitoh, T., Izumi, T., Shiohara, Y.: Nanostructural characterization of YBCO films on metal tape with textured buffer layer fabricated by pulsed-laser deposition. J. Mater. Sci. 41, 2587–2595 (2006). https://doi.org/10.1007/s10853-006-7785-z

    Article  ADS  Google Scholar 

  94. Zhang, H., Yang, J., Wang, S.M., Wu, Y.Y., Lv, Q.L., Li, S.: Film thickness dependence of microstructure and superconductive property of PLD prepared YBCO layers. Physica C 499, 54–56 (2014). https://doi.org/10.1016/j.physc.2014.01.001

    Article  ADS  Google Scholar 

  95. JADE 9.5. Materials Data: Livermore, CA. (2019). https://www.icdd.com/how-to-cite-the-pdf/

  96. Gates-Rector, S., Blanton, T.: The powder diffraction file: a quality materials characterization database. Powder Diffr. 34, 352–360 (2019). https://doi.org/10.1017/S0885715619000812

    Article  ADS  Google Scholar 

  97. Bragg, W.H.: X-rays and crystalline structure. Science 40, 795–802 (1915). https://doi.org/10.1126/science.40.1040.795

    Article  ADS  Google Scholar 

  98. Nelson, J.B., Riley, D.P.: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57, 160–177 (1945). https://doi.org/10.1088/0959-5309/57/3/302

    Article  ADS  Google Scholar 

  99. Gurevich, A., Pashitskii, E.A.: Enhancement of superconductivity at structural defects in high-temperature superconductors. Phys. Rev. B. 56, 6213–6225 (1997). https://doi.org/10.1103/PhysRevB.56.6213

  100. Ichinose, A., Naoe, K., Horide, T., Matsumoto, K., Kita, R., Mukaida, M., Yoshida, Y., Horii, S.: Microstructures and critical current densities of YBCO films containing structure-controlled BaZrO3 nanorods. Supercond. Sci. Technol. 20, 1144–1150 (2007). https://doi.org/10.1088/0953-2048/20/12/010

    Article  ADS  Google Scholar 

  101. Ye, J.H., Nakamura, K.: Quantitative structure analyses of YBa2Cu3O7-δ thin films: determination of oxygen content from X-ray-diffraction patterns. Phys. Rev. B 48, 7554–7564 (1993). https://doi.org/10.1103/physrevb.48.7554

    Article  ADS  Google Scholar 

  102. Miura, S., Yoshida, Y., Ichino, Y., Xu, Q., Matsumoto, K., Ichinose, A., Awaji, S.: Improvement in Jc performance below liquid nitrogen temperature for SmBa2Cu3Oy superconducting films with BaHfO3 nano-rods controlled by low-temperature growth. APL Mater. 4, 016102 (2016). https://doi.org/10.1063/1.4939182

    Article  ADS  Google Scholar 

  103. Tsuchiya, Y., Awaji, S., Watanabe, K., Miura, S., Ichino, Y., Yoshida, Y., Matsumoto, K.: Delocalization of vortex in SmBa2Cu3O7−δ superconducting films with BaHfO3 nano-rods. Appl. Phys. Lett. 120, 103902 (2016). https://doi.org/10.1063/1.4962398

    Article  Google Scholar 

  104. Sieger, M., Hänisch, J., Pahlke, P., Sparing, M., Gaitzsch, U., Iida, K., Nast, R., Reich, E., Schultz, L., Holzapfel, B., Hühne, R.: BaHfO3-doped thick YBa2Cu3O7-δ films on highly alloyed textured Ni-W tapes. IEEE Trans. Appl. Supercon. 25, 6602604 (2015). https://doi.org/10.1109/TASC.2014.2372903

    Article  Google Scholar 

  105. Aye, M.M., Khan, M.Z., Rivasta, E., Tikkanen, J., Huhtinen, H., Paturi, P.: Role of columnar defect size in angular dependent flux pinning properties of YBCO thin films. IEEE Trans. Appl. Supercon. 29, 8000805 (2019). https://doi.org/10.1109/TASC.2019.2892088

    Article  Google Scholar 

  106. Lu, S.D., Liu, L.F., Wang, W., Wu, X., Yao, Y.J., Wang, B.B., Li, Y.J.: Optimization of BaHfO3 doping concentration as secondary phase in Y0.5Gd0.5Ba2Cu3O7−x thin film prepared by pulsed laser deposition. J. Supercond. Nov. Magn. 31, 7–11 (2017). https://doi.org/10.1007/s10948-017-4159-5

  107. MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., Peterson, D.E.: Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x+BaZrO3. Nat. Mater. 3, 439–443 (2004). https://doi.org/10.1038/nmat1156

    Article  ADS  Google Scholar 

  108. Gyorgy, E.M., van Dover, R.B., Jackson, K.A., Schneemeyer, L.F., Waszczak, J.V.: Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model. Appl. Phys. Lett. 55, 283–285 (1989). https://doi.org/10.1063/1.102387

    Article  ADS  Google Scholar 

  109. Wiesinger, H.P., Sauerzopf, F.M., Weber, H.W.: On the calculation of Jc from magnetization measurements on superconductors. Physica C 203, 121–128 (1992). https://doi.org/10.1016/0921-4534(92)90517-G

    Article  ADS  Google Scholar 

  110. Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36, 31–39 (1964). https://doi.org/10.1103/RevModPhys.36.31

    Article  ADS  Google Scholar 

  111. Petermann, J.: Precipitates and flux line pinning in a superconducting Pb-Na alloy. Int. J. Mater. Res. 61, 724 (1970). https://doi.org/10.1515/ijmr-1970-611007

    Article  Google Scholar 

  112. Zhukov, A.A., Kupfer, H., Perkins, G., Cohen, L.F., Caplin, A.D., Klestov, S.A., Claus, H., Voronkova, V.V., Wolf, T., Wuhl, H.: Influence of oxygen stoichiometry on the irreversible magnetization and flux creep in RBa2Cu3O7-δ (R = Y, Tm) single crystals. Phys. Rev. B 51, 12704–12714 (1995). https://doi.org/10.1103/physrevb.51.12704

    Article  ADS  Google Scholar 

  113. Paturi, P., Irjala, M., Abrahamsen, A., Huhtinen, H.: Defining Bc, B* and BΦ for YBCO thin films. IEEE Trans. Appl. Supercon. 19, 3431–3434 (2009). https://doi.org/10.1109/TASC.2009.2019095

    Article  ADS  Google Scholar 

  114. Augieri, A., Celentano, G., Galluzzi, V., Mancini, A., Rufoloni, A., Vannozzi, A., Angrisani Armenio, A., Petrisor, T., Ciontea, L., Rubanov, S., Silva, E., Pompeo, N.: Pinning analyses on epitaxial YBa2Cu3O7-δ films with BaZrO3 inclusions. J. Appl. Phys. 108, 063906 (2010). https://doi.org/10.1063/1.3477451

    Article  ADS  Google Scholar 

  115. Civale, L., Pasquini, G., Levy, P., Nieva, G., Casa, D., Lanza, H.: Time relaxation of persistent currents in YBa2Cu3O7−x crystals with columnar defects. Physica C 263, 389–395 (1996). https://doi.org/10.1016/0921-4534(95)00782-2

    Article  ADS  Google Scholar 

  116. Nelson, D.R., Vinokur, V.M.: Boson localization and correlated pinning of superconducting vortex arrays. Phys. Rev. B 48, 13060–13097 (1993). https://doi.org/10.1103/physrevb.48.13060

    Article  ADS  Google Scholar 

  117. Niebieskikwiat, D., Silhanek, A., Civale, L., Nieva, G., Levy, P., Krusin-Elbaum, L.: Suppression of matching field effects by splay and pinning energy dispersion in YBa2Cu3O7 with columnar defects. Phys. Rev. B 63, 144504 (2001). https://doi.org/10.1103/PhysRevB.63.144504

    Article  ADS  Google Scholar 

  118. Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994). https://doi.org/10.1103/RevModPhys.66.1125

    Article  ADS  Google Scholar 

  119. Wang, Y., Xu, D., Li, Y.J., Liu, L.F.: Texture and morphology developments of yttria-stabilized zirconia (YSZ) buffer layer for coated conductors by RF sputtering. Surf. Coat. Technol. 232, 497–503 (2013). https://doi.org/10.1016/j.surfcoat.2013.06.008

    Article  Google Scholar 

  120. Campbell, A.M., Evetts, J.E., Dew-Hughes, D.: Pinning of flux vortices in type II superconductors. Philos. Mag. 18, 313–343 (1968). https://doi.org/10.1080/00318086.1968.11716235

    Article  ADS  Google Scholar 

  121. Dew-Hughes, D.: Flux pinning mechanisms in type II superconductors. Philos. Mag. 30, 293–305 (2006). https://doi.org/10.1080/14786439808206556

    Article  ADS  Google Scholar 

  122. Montgomery, D.B., Sampson, W.: Measurements on niobium-tin samples in 200-kG continuous fields. Appl. Phys. Lett. 6, 108–111 (1965). https://doi.org/10.1063/1.1754188

    Article  ADS  Google Scholar 

  123. Shapira, Y., Neuringer, L.J.: Upper critical fields of Nb-Ti alloys: evidence for the influence of Pauli paramagnetism. Phys. Rev. 140, A1638–A1644 (1965). https://doi.org/10.1103/PhysRev.140.A1638

    Article  ADS  Google Scholar 

  124. Bonura, M., Giannini, E., Viennois, R., Senatore, C.: Temperature and time scaling of the peak-effect vortex configuration in FeTe0.7Se0.3. Phys. Rev. B. 85, 134532 (2012). https://doi.org/10.1103/PhysRevB.85.134532

  125. Paturi, P., Malmivirta, M., Palonen, H., Huhtinen, H.: Dopant diameter dependence of Jc(B) in doped YBCO films. IEEE Trans. Appl. Supercon. 26, 8000705 (2016). https://doi.org/10.1109/TASC.2016.2533567

    Article  Google Scholar 

  126. Matsushita, T.: Flux Pinning in Superconductors. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  127. Lao, M., Willa, R., Meledin, A., Rijckaert, H., Chepikov, V., Lee, S., Petrykin, V., van Driessche, I., Molodyk, A., Holzapfel, B., Hänisch, J.: In-field performance and flux pinning mechanism of pulsed laser deposition grown BaSnO3/GdBa2Cu3O7–δ nanocomposite coated conductors by SuperOx. Supercond. Sci. Technol. 32, 094003 (2019). https://doi.org/10.1088/1361-6668/ab2a95

    Article  ADS  Google Scholar 

  128. Niel, L.: Scaling laws for the volume pinning force in high-temperature superconductors. Cryogenics 32, 975–978 (1992). https://doi.org/10.1016/0011-2275(92)90010-8

    Article  ADS  Google Scholar 

  129. Dew-Hughes, D.: The critical current of superconductors: an historical review. Low Temp. Phys. 27, 713–722 (2001). https://doi.org/10.1063/1.1401180

    Article  ADS  Google Scholar 

  130. Khan, M.Z., Malmivirta, M., Zhao, Y., Wu, X., Jha, R., Awana, V.P.S., Huhtinen, H., Paturi, P.: Angular and field dependent flux pinning in artificially doped YBCO films on IBAD-MgO based template. Physica C 555, 15–23 (2018). https://doi.org/10.1016/j.physc.2018.10.006

    Article  ADS  Google Scholar 

  131. Palonen, H., Jäykkä, J., Paturi, P.: Modeling reduced field dependence of critical current density in YBa2Cu3O6+x films with nanorods. Phys. Rev. B 85, 024510 (2012). https://doi.org/10.1103/physrevb.85.024510

    Article  ADS  Google Scholar 

  132. Askerzade, I.: Unconventional Superconductors: Anisotropy and Multiband Effects. Springer, Berlin, Heidelberg (2012)

    Book  Google Scholar 

  133. Yamasaki, H.: Field-angular dependence study of the critical current density in (RE)Ba2Cu3O7 films with nanoprecipitates larger than normal-core diameter of a quantized flux line. Physica C 563, 48–58 (2019). https://doi.org/10.1016/j.physc.2019.04.007

    Article  ADS  Google Scholar 

  134. Reichhardt, C., Grønbech-Jensen, N.: Collective multivortex states in periodic arrays of traps. Phys. Rev. Lett. 85, 2372–2375 (2000). https://doi.org/10.1103/PhysRevLett.85.2372

    Article  ADS  Google Scholar 

  135. Palau, A., Vallès, F., Rouco, V., Coll, M., Li, Z., Pop, C., Mundet, B., Gàzquez, J., Guzman, R., Gutierrez, J., Obradors, X., Puig, T.: Disentangling vortex pinning landscape in chemical solution deposited superconducting YBa2Cu3O7−x films and nanocomposites. Supercond. Sci. Technol. 31, 034004 (2018). https://doi.org/10.1088/1361-6668/aaa65e

    Article  ADS  Google Scholar 

  136. Puig, T., Gutiérrez, J., Pomar, A., Llordés, A., Gázquez, J., Ricart, S., Sandiumenge, F., Obradors, X.: Vortex pinning in chemical solution nanostructured YBCO films. Supercond. Sci. Technol. 21, 034008 (2008). https://doi.org/10.1088/0953-2048/21/3/034008

    Article  ADS  Google Scholar 

  137. Plain, J., Puig, T., Sandiumenge, F., Obradors, X., Rabier, J.: Microstructural influence on critical currents and irreversibility line in melt-textured YBa2Cu3O7−x reannealed at high oxygen pressure. Phys. Rev. B 65, 104526 (2002). https://doi.org/10.1103/PhysRevB.65.104526

    Article  ADS  Google Scholar 

  138. Vallès, F., Palau, A., Abraimov, D., Jaroszynski, J., Constantinescu, A.M., Mundet, B., Obradors, X., Larbalestier, D., Puig, T.: Optimizing vortex pinning in YBa2Cu3O7-x superconducting films up to high magnetic fields. Communications Materials 3, 45 (2022). https://doi.org/10.1038/s43246-022-00266-y

    Article  ADS  Google Scholar 

  139. Xu, A., Braccini, V., Jaroszynski, J., Xin, Y., Larbalestier, D.C.: Role of weak uncorrelated pinning introduced by BaZrO3 nanorods at low-temperature in (Y, Gd)Ba2Cu3Ox thin films. Phys. Rev. B 86, 115416 (2012). https://doi.org/10.1103/PhysRevB.86.115416

    Article  ADS  Google Scholar 

  140. Gutierrez, J., Llordes, A., Gazquez, J., Gibert, M., Roma, N., Ricart, S., Pomar, A., Sandiumenge, F., Mestres, N., Puig, T., Obradors, X.: Strong isotropic flux pinning in solution-derived YBa2Cu3O7-x nanocomposite superconductor films. Nat. Mater. 6, 367–373 (2007). https://doi.org/10.1038/nmat1893

    Article  ADS  Google Scholar 

  141. Polat, Ö., Sinclair, J.W., Zuev, Y.L., Thompson, J.R., Christen, D.K., Cook, S.W., Kumar, D., Chen, Y.M., Selvamanickam, V.: Thickness dependence of magnetic relaxation and E-J characteristics in superconducting (Gd-Y)-Ba-Cu-O films with strong vortex pinning. Phys. Rev. B 84, 024519 (2011). https://doi.org/10.1103/PhysRevB.84.024519

    Article  ADS  Google Scholar 

  142. Cantoni, C., Gao, Y.F., Wee, S.H., Specht, E.D.: Strain-driven oxygen deficiency in self-assembled, nanostructured, composite oxide films. ACS Nano 5, 4783–4789 (2011). https://doi.org/10.1021/nn2007628

    Article  Google Scholar 

  143. Horide, T., Kametani, F., Yoshioka, S., Kitamura, T., Matsumoto, K.: Structural evolution induced by interfacial lattice mismatch in self-organized YBa2Cu3O7-δ nanocomposite film. ACS Nano 11, 1780–1788 (2017). https://doi.org/10.1021/acsnano.6b07716

    Article  Google Scholar 

  144. Larkin, A.I., Ovchinnikov, Y.N.: Pinning in type II superconductors. J. Low Temp. Phys. 34, 409–428 (1979). https://doi.org/10.1007/BF00117160

    Article  ADS  Google Scholar 

  145. Willa, R., Geshkenbein, V., Blatter, G.: Probing the pinning landscape in type-II superconductors via Campbell penetration depth. Phys. Rev. B 93, 064515 (2016). https://doi.org/10.1103/PhysRevB.93

    Article  ADS  Google Scholar 

  146. Pahlke, P., Sieger, M., Ottolinger, R., Lao, M., Eisterer, M., Meledin, A., Van Tendeloo, G., Hänisch, J., Holzapfel, B., Schultz, L., Nielsch, K., Hühne, R.: Influence of artificial pinning centers on structural and superconducting properties of thick YBCO films on ABAD-YSZ templates. Supercond. Sci. Technol. 31, 044007 (2018). https://doi.org/10.1088/1361-6668/aaafbe

    Article  ADS  Google Scholar 

  147. Ko, K., Choi, S.M., Lee, J.W., Ko, R.K., Moon, S.H., Park, C., Yoo, S.I.: Optimization of the BaSnO3 doping content in GdBa2Cu3O7−δ coated conductors by pulsed laser deposition. IEEE Trans. Appl. Supercon. 24, 6600908 (2014). https://doi.org/10.1109/TASC.2014.2338296

    Article  Google Scholar 

  148. Schilling, A., Fisher, R.A., Phillips, N.E., Welp, U., Dasgupta, D., Kwok, W.K., Crabtree, G.W.: Calorimetric measurement of the latent heat of vortex-lattice melting in untwinned YBa2Cu3O7–δ. Nature 382, 791–793 (1996). https://doi.org/10.1038/382791a0

    Article  ADS  Google Scholar 

  149. Farrell, D.E., Rice, J.P., Ginsberg, D.M., Liu, J.Z.: Experimental evidence of a dimensional crossover in Y1Ba2Cu3O7−δ. Phys. Rev. Lett. 64, 1573–1576 (1990). https://doi.org/10.1103/PhysRevLett.64.1573

    Article  ADS  Google Scholar 

  150. Kwok, W.K., Fleshler, S., Welp, U., Vinokur, V.M., Downey, J., Crabtree, G.W., Miller, M.M.: Vortex lattice melting in untwinned and twinned single crystals of YBa2Cu3O7−δ. Phys. Rev. Lett. 69, 3370–3373 (1992). https://doi.org/10.1103/PhysRevLett.69.3370

    Article  ADS  Google Scholar 

  151. Civale, L., Maiorov, B., MacManus-Driscoll, J.L., Wang, H., Holesinger, T.G., Foltyn, S.R., Serquis, A., Arendt, P.N.: Identification of intrinsic ab-plane pinning in YBa2Cu3O7 thin films and coated conductors. IEEE Trans. Appl. Supercon. 15, 2808–2811 (2005). https://doi.org/10.1109/TASC.2005.848218

    Article  ADS  Google Scholar 

  152. Kim, S.I., Gurevich, A., Song, X., Li, X., Zhang, W., Kodenkandath, T., Rupich, M.W., Holesinger, T.G., Larbalestier, D.C.: Mechanisms of weak thickness dependence of the critical current density in strong-pinningex situmetal–organic-deposition-route YBa2Cu3O7−x coated conductors. Supercond. Sci. Technol. 19, 968–979 (2006). https://doi.org/10.1088/0953-2048/19/9/013

    Article  ADS  Google Scholar 

  153. Figueras, J., Puig, T., Obradors, X., Olsson, R.J., Kwok, W.K., Crabtree, G.W.: Multidirectional in-plane linear correlated disorder pinning of vortices in YBa2Cu3O7. Supercond. Sci. Technol. 21, 025002 (2008). https://doi.org/10.1088/0953-2048/21/02/025002

    Article  ADS  Google Scholar 

  154. Yuan, P. S., Xu, Z. T., Ma, Y. W., Sun, Y., Tamegai, T.: Angular-dependent vortex pinning mechanism and magneto-optical characterizations of FeSe0.5Te0.5 thin films grown on CaF2 substrates. Supercond. Sci. Technol. 29, 035013 (2016). https://doi.org/10.1088/0953-2048/29/3/035013

  155. Palau, A., Durrell, J.H., Macmanus-Driscoll, J.L., Harrington, S., Puig, T., Sandiumenge, F., Obradors, X., Blamire, M.G.: Crossover between channeling and pinning at twin boundaries in YBa2Cu3O7 thin films. Phys. Rev. Lett. 97, 257002 (2006). https://doi.org/10.1103/PhysRevLett.97.257002

    Article  ADS  Google Scholar 

  156. Díaz, A., Mechin, L., Berghuis, P., Evetts, J.E.: Evidence for vortex pinning by dislocations in YBa2Cu3O7−δ low-angle grain boundaries. Phys. Rev. Lett. 80, 3855–3858 (1998). https://doi.org/10.1103/PhysRevLett.80.3855

    Article  ADS  Google Scholar 

  157. Baca, F.J., Haugan, T.J., Barnes, P.N., Holesinger, T.G., Maiorov, B., Lu, R.T., Wang, X., Reichart, J.N., Wu, J.Z.: Interactive growth effects of rare-earth nanoparticles on nanorod formation in YBa2Cu3Ox thin films. Adv. Funct. Mater. 23, 4826–4831 (2013). https://doi.org/10.1002/adfm.201203660

    Article  Google Scholar 

  158. Maiorov, B., Baily, S.A., Zhou, H., Ugurlu, O., Kennison, J.A., Dowden, P.C., Holesinger, T.G., Foltyn, S.R., Civale, L.: Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7. Nat. Mater. 8, 398–404 (2009). https://doi.org/10.1038/nmat2408

    Article  ADS  Google Scholar 

  159. Blatter, G., Geshkenbein, V.B., Larkin, A.I.: From isotropic to anisotropic superconductors: a scaling approach. Phys. Rev. Lett. 68, 875–878 (1992). https://doi.org/10.1103/PhysRevLett.68.875

    Article  ADS  Google Scholar 

  160. Hou, L.T., Deak, J., Metcalf, P., McElfresh, M., Preosti, G.: Dependence of the vortex-solid phase transition of YBa2Cu3O7−δ thin films on anisotropy: evidence for a universal phase boundary. Phys. Rev. B 55, 11806–11815 (1997). https://doi.org/10.1103/PhysRevB.55.11806

    Article  ADS  Google Scholar 

  161. Palau, A., Llordés, A., Gibert, M., Puig, T., Pomar, A., Obradors, X.: Pinning landscape analysis in YBCO films with epitaxial and-or non-coherent BZO nanoparticles. IEEE Trans. Appl. Supercon. 21, 3243–3246 (2011). https://doi.org/10.1109/TASC.2010.2092408

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (Grant No. U1832157), National Key R&D Program of China (Grant No. 2018YFA0704300), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25020205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linfei Liu or Yijie Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 466 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Mou, S., Zhu, R. et al. In-field Performance Comparison and Vortex Pinning Analysis in Depth of Pristine and BaHfO3-Doped Y0.5Gd0.5Ba2Cu3O7-δ Films in Different Temperature Regions. J Supercond Nov Magn 35, 3505–3520 (2022). https://doi.org/10.1007/s10948-022-06427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06427-x

Keywords

Navigation