Skip to main content
Log in

Effects of Ion-Doping at A Site and B Site on Structure and Magnetic Properties of BiFeO3 Nanoparticles

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Multiferroic BiFeO3 and 10% La/Mn-doped BiFeO3 powder samples were synthesized by conventional hydrothermal method to study the substitution at different sites driven by structural transformation and magnetic property in BiFeO3. Room-temperature X-ray diffraction (XRD) patterns identified the rhombohedral R3c symmetry for all samples and further confirmed by the Bi-L3 edge and Fe-K edge X-ray absorption fine structure (XAFS) spectra. However, a nanoscale phase transition from R3c structure to orthorhombic symmetry was revealed by the La-L3 edge XAFS. In contrast, the Mn-doped BiFeO3 remained R3c crystal structure. Besides, the variation of magnetism due to A-site and B-site substitution in BiFeO3 was observed in the magnetic hysteresis loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yuan, X.Y., Shi, L., Zhao, J.Y., Zhou, S.M., Li, Y., Xie, C.Z., Guo, J.H.: Sr and Pb co-doping effect on the crystal structure, dielectric and magnetic properties of BiFeO3 multiferroic compounds. J. Alloy. Compd. 708, 93–98 (2017). https://doi.org/10.1016/j.jallcom.2017.02.288

    Article  Google Scholar 

  2. Rojac, T., Bencan, A., Malic, B., Tutuncu, G., Jones, J.L., Daniels, J.E., Damjanovic, D.: BiFeO3 ceramics: processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97(7), 1993–2011 (2014). https://doi.org/10.1111/jace.12982

    Article  Google Scholar 

  3. Vashisth, B.K., Bangruwa, J.S., Beniwal, A., Gairola, S.P., Kumar, A., Singh, N., Verma, V.: Modified ferroelectric/magnetic and leakage current density properties of Co and Sm co-doped bismuth ferrites. J. Alloy. Compd. 698, 699–705 (2017). https://doi.org/10.1016/j.jallcom.2016.12.278

    Article  Google Scholar 

  4. Singh, A., Pandey, V., Kotnala, R.K., Pandey, D.: Direct evidence for multiferroic magnetoelectric coupling in 09 BiFeO3–0.1BaTiO3. Phys. Rev. Lett. 101, 247602 (2008). https://doi.org/10.1103/PhysRevLett.101.247602

    Article  ADS  Google Scholar 

  5. Beniwal, A., Bangruwa, J.S., Walia, R.: Verma, V: A systematic study on multiferroics Bi1-xCexFe1-yMnyO3: structural, magnetic and electrical properties. Ceram. Int. 42, 10373–10379 (2016). https://doi.org/10.1016/j.ceramint.2016.03.169

    Article  Google Scholar 

  6. Anju, A., Agarwal, A., Agarwal, P., Aghamkar, V., Singh, O., Kumar, A.: Structural transitions and multiferrocity in Ba and Co substituted nanosized bismuth ferrite. J. Alloy. Compd. 697, 333–340 (2017). https://doi.org/10.1016/j.jallcom.2016.12.082

    Article  Google Scholar 

  7. Jarrier, R., Marti, X., Herrero-Albillos, J., Ferrer, P., Haumont, R., Gemeiner, P., Geneste, G., Berthet, P., Schülli, T., Cevc, P., Blinc, R., Wong, S.S., Park, T.J., Alexe, M., Carpenter, M.A., Scott, J.F., Catalan, G., Dkhil, B.: Surface phase transitions in BiFeO3 below room temperature. Phys. Rev. B 85(18), 184104 (2012). https://doi.org/10.1103/PhysRevB.85.184104

    Article  ADS  Google Scholar 

  8. Arya, G., Kotnala, R.K., Negi, N.S.: A novel approach to improve properties of BiFeO3 nanomultiferroics. J. Am. Ceram. Soc. 97(5), 1475–1480 (2014). https://doi.org/10.1111/jace.12782

    Article  Google Scholar 

  9. Vanga, P.R., Mangalaraja, R.V., Giridharan, N.V., Ashok, M.: Influence o divalent Ni and trivalent Cr ions on the properties of ytterbium modified bismuth ferrite. J. Alloy. Compd. 684, 55–61 (2016). https://doi.org/10.1016/j.jallcom.2016.05.138

    Article  Google Scholar 

  10. Yang, C.H., Kan, D., Takeuchi, I., Nagarajan, V., Seidel, J.: Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14(46), 15953–15962 (2012). https://doi.org/10.1039/c2cp43082g

    Article  Google Scholar 

  11. Kumar, P., Kar, M.: Tuning of net magnetic moment in BiFeO3 multiferroics by co-substitution of Nd and Mn. Physica B 448, 90–95 (2014). https://doi.org/10.1016/j.physb.2014.03.080

    Article  ADS  Google Scholar 

  12. Sati, P.C., Kumar, M., Chhoker, S.: Low temperature ferromagntic ordering and dielectric properties of Bi1-xDyxFeO3 ceramics. Ceram. Int. 41(2), 3227–3236 (2015). https://doi.org/10.1016/j.ceramint.2014.11.012

    Article  Google Scholar 

  13. Kan, D., Pálová, L., Anbusathaiah, V., Cheng, C.J., Fujino, S., Nagarajan, V., Rabe, K.M., Takeuchi, I.: Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20(7), 1108–1115 (2010). https://doi.org/10.1002/adfm.200902017

    Article  Google Scholar 

  14. Das, R., Sharma, S., Mandal, K.: Aliovalent Ba2+ doping: a way to reduce oxygen vacancy in multiferroic BiFeO3. J. Magn. Magn. Mater. 401, 129–137 (2016). https://doi.org/10.1016/j.jmmm.2015.10.022

    Article  ADS  Google Scholar 

  15. Ramachandran, B., Dixit, A., Naik, R., Lawes, G., Rao, M.S.R.: Weak ferromagnetic ordering in Ca doped polycrystalline BiFeO3. J. Appl. Phys. 111, 023910 (2012). https://doi.org/10.1063/1.3678449

    Article  ADS  Google Scholar 

  16. Karpinsky, D.V., Troyanchuk, I.O., Mantytskaya, O.S., Chobot, G.M., Sikolenko, V.V., Efifimov, V., Tovar, M.: Magnetic and piezoelectric properties of the Bi1-xLaxFeO3 system near the transition from the polar to antipolar phase. Phys. Solid State 56, 701–706 (2014). https://doi.org/10.1134/S106378341404012X

    Article  ADS  Google Scholar 

  17. Rangi, M., Sanghi, S., Jangra, S., Kaswan, K., Khasa, S., Agarwal, A.: Crystal structure transformation and improved dielectric and magnetic properties of La-substituted BiFeO3 multiferroics. Ceram. Int. 43, 12095–12101 (2017). https://doi.org/10.1016/j.ceramint.2017.06.065

    Article  Google Scholar 

  18. Liu, K.T., Li, J., Xu, J.B., Xu, F.L., Wang, L., Bian, L.: Study on dielectric, optic and magnetic properties of manganese and nickel co-doped bismuth ferrite thin film. J. Mater. Sci: Mater. Electron. 28, 5609–5614 (2017). https://doi.org/10.1007/s10854-016-6229-z

    Article  Google Scholar 

  19. Ge, W.N., Rahman, A., Cheng, H.R., Zhang, M., Liu, J.D., Zhang, Z.M., Ye, B.J.: Probing the role of cation vacancies on the ferromagnetism of La-doped BiFeO3 ceramics. J. Magn. Magn. Mater. 449, 401–405 (2018). https://doi.org/10.1016/j.jmmm.2017.10.082

    Article  ADS  Google Scholar 

  20. Masoudpanah, S.M., Mirkazemi, S.M., Bagheriyeh, R., Jabbari, F., Bayat, F.: Structural, magnetic and photocatalytic characterization of Bi1-xLaxFeO3 nanoparticles synthesized by thermal decomposition method. Bull. Mater. Sci. 40, 93–100 (2017). https://doi.org/10.1007/s12034-016-1346-0

    Article  Google Scholar 

  21. Wang, K.F., Liu, J.M., Ren, Z.F.: Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58, 321–448 (2009). https://doi.org/10.1080/00018730902920554

    Article  ADS  Google Scholar 

  22. Yan, F.X., Han, K., Jiao, Z.C., Zhao, G.Y., Wang, T., Guo, M.L., Chen, Y.Q.: Crating-patterned Bi0.85La0.15Fe0.95Mn0.05O3 epitaxial thin film prepared using photosensitive sol-gel method and its ferromagnetic and ferroelectric properties. J. Alloy. Compd. 728, 152–158 (2017). https://doi.org/10.1016/j.jallcom.2017.08.283

    Article  Google Scholar 

  23. Han, Y.M., Ma, Y.H., Quan, C.Y., Gao, N., Zhang, Q.X., Mao, W.W., Zhang, J., Yang, J.P., Li, X.A., Huang, W.: Substitution-driven structural, optical and magnetic transformation of Mn, Zn doped BiFeO3. Ceram. Int. 41(2), 2476–2483 (2015). https://doi.org/10.1016/j.ceramint.2014.10.065

    Article  Google Scholar 

  24. Kader, S.M.A., Ruth, D.E.J., Babu, M.V.G., Muneeswaran, M., Giridharan, N.V., Sundarakannan, B.: Investigations on the effect of Ba and Zr co-doping on the structural, thermal, electrical and magnetic properties of BiFeO3 multiferroics. Ceram. Int. 43(17), 15544–15550 (2017). https://doi.org/10.1016/j.ceramint.2017.08.104

    Article  Google Scholar 

  25. Baun, I.B.S., Lakshmi, S.D.: Simultaneous enhancement of room temperature multiferroic properties of BiFeO3 by Nd doping at Bi site and Co doping at Fe site. J. Mater. Sci.: Mater. Electron. 28, 16044–16052 (2017). https://doi.org/10.1007/s10854-017-7504-3

    Article  Google Scholar 

  26. Chandel, S., Thakur, P., Tomar, M., Gupta, V., Thakur, A.: Investigation of structural, optical, dielectric and magnetic studies of Mn substituted BiFeO3 multiferroics. Ceram. Int. 43(16), 13750–13758 (2017). https://doi.org/10.1016/j.ceramint.2017.07.088

    Article  Google Scholar 

  27. Pradhan, D.K., Choudhary, R.N.P., Rinaldi, C., Katiyar, R.S.: Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 024102 (2009). https://doi.org/10.1063/1.3158121

    Article  ADS  Google Scholar 

  28. Dhanalakshmi, B., Pratap, K., Rao, B.P., Rao, P.S.V.S.: Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics. J. Alloy. Comp. 676, 193–201 (2016). https://doi.org/10.1016/j.jallcom.2016.03.208

    Article  Google Scholar 

  29. Wang, Y.: Pressure induced phase transition of La-substituted BiFeO3. Solid State Commun. 341, 114595 (2022). https://doi.org/10.1016/j.ssc.2021.114595

    Article  Google Scholar 

  30. Gholam, T., Ablat, A., Mamat, M., Wu, R., Aimidula, A., Bake, M.A., Zheng, L., Wang, J., Qian, H., Wu, R.: Local electronic structure analysis of Zn-doped BiFeO3 powders by X-ray absorption fine structure spectroscopy. J. Alloy. Comp. 710, 843–849 (2017). https://doi.org/10.1016/j.jallcom.2017.03.242

    Article  Google Scholar 

  31. Gholam, T., Ablat, A., Mamat, M., Wu, R., Aimidula, A., Bake, M.A., Zheng, L.R., Wang, J.O., Qian, H.J., Wu, R., Ibrahim, K.: An experimental study of the local electronic structure of B-site gallium doped bismuth ferrite powders. Phys. Lett. A 381(29), 2367–2373 (2017). https://doi.org/10.1016/j.physleta.2017.05.007

    Article  ADS  Google Scholar 

  32. Wang, Y., Guo, Z.Y., Jia, Q.J., Dong, J.C., Zhang, J., Chen, D.L.: Effect of Nd/Mn substitution on the structure and magnetic properties of nano-BiFeO3. J. Alloys Compd. 786, 385–393 (2019). https://doi.org/10.1016/j.jallcom.2019.01.369

    Article  Google Scholar 

  33. Du, Y., Cheng, Z.X., Shahbazi, M., Collings, E.W., Dou, S.X., Wang, X.L.: Enhancement of ferromagnetic and dielectric properties in lanthanum doped BiFeO3 by hydrothermal synthesis. J. Alloys Compd. 490(1–2), 637–341 (2010). https://doi.org/10.1016/j.jallcom.2009.10.124

    Article  Google Scholar 

  34. Ravel, B., Newville, M.: ATHENE, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719

    Article  Google Scholar 

  35. Rehr, J.J., Albers, R.C.: Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621 (2000). https://doi.org/10.1103/RevModPhys.72.621

    Article  ADS  Google Scholar 

  36. Kumar, A., Varshney, D.: Crystal structure refinement of Bi1-xNdxFeO3 multiferroic by the Rietveld method. Ceram. Int. 38(5), 3935–3942 (2012). https://doi.org/10.1016/j.ceramint.2012.01.046

    Article  Google Scholar 

  37. Liu, S., Luo, H., Yan, S.Q., Yao, L.L., He, J., Li, Y.H., He, L.H., Huang, S.X., Deng, L.W.: Effect of Nd-doping on structure and microwave eletromagnetic properties of BiFeO3. J. Magn. Magn. Mater. 426, 267–272 (2017). https://doi.org/10.1016/j.jmmm.2016.11.080

    Article  ADS  Google Scholar 

  38. Yuan, G.L., Or, S.W., Chan, H.L.W.: Structure transformation and ferroelectric-paraelectric phase transition in Bi1-xLaxFeO3 (x= 0–0.25) mulfiferroic ceramics. J. Phys. D: Appl. Phys. 40, 1196 (2007). https://doi.org/10.1088/0022-3727/40/4/043

    Article  ADS  Google Scholar 

  39. Pandit, P., Satapathy, S., Gupta, P.K.: Effect of La substitution on conductivity and dielectric properties of Bi1-xLaxFeO3 ceramics: an impedance spectroscopy analysis. Physica B 406(13), 2669–2677 (2011). https://doi.org/10.1016/j.physb.2011.03.081

    Article  ADS  Google Scholar 

  40. Basu, S., Hossain, S.K.M., Chakravorty, D., Pal, M.: Enhanced magnetic properties in hydrothermally synthesized Mn-doped BiFeO3 nanoparticles. Curr. Appl. Phys. 11(4), 976–980 (2011). https://doi.org/10.1016/j.cap.2010.12.034

    Article  ADS  Google Scholar 

  41. Pei, Y.L., Zhang, C.L.: Effect of ion doping in different sites on morphology and photocatalytic activity of BiFeO3 microcrystals. J. Alloy. Compd. 570, 57–60 (2013). https://doi.org/10.1016/j.jallcom.2013.03.176

    Article  Google Scholar 

  42. Chen, Z.W., Li, Y.F., Wu, Y.P., Hu, J.Q.: Hydrothermal synthesis and mechanism and property study of La-doped BiFeO3 crytallites. J. Mater. Sci. Mater. Electron. 23, 1402–1408 (2012). https://doi.org/10.1007/s10854-011-0605-5

    Article  Google Scholar 

  43. Du, Y., Cheng, Z.X., Dou, S.X., Shahbazi, M., Wang, X.L.: Enhancement of magnetization and dielectric properties of chromium-doped BiFeO3 with tunable morphologies. Thin Solid Films 518(24), e5–e8 (2010). https://doi.org/10.1016/j.tsf.2010.03.118

    Article  ADS  Google Scholar 

  44. Tang, P., Kuang, D.H., Yang, S.H., Zhang, Y.L.: Hydrothermal synthesis and structural, morphologic and magnetic characteristics of Mn doped bismuth ferrite crystallites. J. Mater. Sci. Mater. Electron. 27, 2594–2600 (2016). https://doi.org/10.1007/s10854-015-4063-3

    Article  Google Scholar 

  45. Tlemcani, T.S., Bahraoui, T.E., Taibi, M., Belayachi, A., Schmerbe, G., Dinia, A., Lefdil, M.A.: Effect of Nd substitution on physical properties of multiferroic compound BiFeO3. J. Sol. Gel Sci. Technol. 73, 637–678 (2015). https://doi.org/10.1007/s10971-015-3654-z

    Article  Google Scholar 

  46. Ankudinov, A.L., Bouldin, C.E., Rehr, J.J., Sims, J., Hung, H.: Parallel calculation of electron multiple scattering using Lanczos algorithms. Phys. Rev. B 65, 104107 (2002). https://doi.org/10.1103/PhysRevB.65.104107

    Article  ADS  Google Scholar 

  47. Ankudinov, A.L., Ravel, B., Rher, J.J., Conradson, S.D.: Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565 (1998). https://doi.org/10.1103/PhysRevB.58.7565

    Article  ADS  Google Scholar 

  48. Yotburut, B., Yamwong, T., Thongbai, P., Maensiri, S.: Synthesis and characterization of coprecipitation-prepared La-doped BiFeO3 nanopowders and their bulk dielectric properties. Jpn. J. Appl. Phys. 53, 06GJ13 (2014). https://doi.org/10.7567/jjap.53.06jg13

    Article  Google Scholar 

  49. Lee, D.G., Kim, M.G., Ryu, S., Jang, H.M., Lee, S.G.: Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films. Appl. Phys. Lett. 86, 222903 (2005). https://doi.org/10.1063/1.1941474

    Article  ADS  Google Scholar 

  50. Ishimatsu, N., Watanabe, T., Oka, K., Azuma, M., Mizumaki, M., Nitta, K., Ina, T., Kawamura, N.: Differences in local structure around Co and Fe of the BiCo1-xFexO3 system determined by x-ray absorption fine structure. Phys. Rev. B 92, 054108 (2015). https://doi.org/10.1103/PhysRevB.92.054108

    Article  ADS  Google Scholar 

  51. Jutimoosik, J., Hunpratub, S., Maensiri, S., Rujirawat, S., Yimnirun, R.: On preferred Mn site in multiferroic BiFeO3: a view by synchrotron x-ray absorption near edge structure spectroscopy. J. Appl. Phys. 116, 104105 (2014). https://doi.org/10.1063/1.4895474

    Article  ADS  Google Scholar 

  52. Vázquez, O.E.G., Wojdeł, J.C., Diéguez, O., Íñiguez, J.: First-principles investigation of the structural phases and enhanced response properties of the BiFeO3-LaFeO3 multiferroic solid solution. Phys. Rev. B 85, 064119 (2012). https://doi.org/10.1103/PhysRevB.85.064119

    Article  ADS  Google Scholar 

  53. Troyanchuk, I.O., Karpinsky, D.V., Bushinsky, M.V., Khomchenko, V.A., Kakazei, G.N., Araujo, J.P., Tovar, M., Sikolenko, V., Efimov, V., Kholkin, A.L.: Isothermal structural transitions, magnetization and large piezoelectric response in Bi1-xLaxFeO3 perovskites. Phys. Rev. B 83, 054109 (2011). https://doi.org/10.1103/PhysRevB.83.054109

    Article  ADS  Google Scholar 

  54. Yu, C.Y., Viola, G., Zhang, D., Zhou, K.C., Koval, B., Mahajan, A., Wilson, R.M., Tarakina, N.V., Abrahams, I., Yan, H.X.: Phase evolution and electrical behaviour of samarium-substituted bismuth ferrite ceramics. J. Eur. Ceram. Soc. 38(4), 1374–1380 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.016

    Article  Google Scholar 

  55. Mazumder, R., Devi, P.S., Bhattacharya, D., Choudhury, P., Sen, A., Raja, M.: Ferromagnetism in nanoscale BiFeO3. Appl. Phys. Lett. 91, 062510 (2007). https://doi.org/10.1063/1.2768201

    Article  ADS  Google Scholar 

  56. Goodenough, J.B.: Theory of the role of covalence in the perovskite-type manganites [La, M(II)] MnO3. Phys. Rev. 100, 564–573 (1955). https://doi.org/10.1103/physrev.100.564

    Article  ADS  Google Scholar 

  57. Pradhan, S.K., Roul, B.K., Sahu, D.R.: Enhancement of ferromagnetism and multiferroicity in Ho doped Fe rich BiFeO3. Solid State Commun. 152(13), 1176–1180 (2012). https://doi.org/10.1016/j.ssc.2012.03.034

    Article  ADS  Google Scholar 

  58. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960). https://doi.org/10.1103/PhysRev.120.91

    Article  ADS  Google Scholar 

  59. Lü, F.C., Yin, K., Fu, K.X., Wang, Y.N., Ren, J., Xie, Q.: Enhanced magnetic and dielectric properties of Y doped bismuth ferrite nanofiber. Ceram. Int. 43, 16101–16106 (2017). https://doi.org/10.1016/j.ceramint.2017.08.171

    Article  Google Scholar 

Download references

Funding

This work is supported by the Fundamental Research Funds for the Central Universities (grant no. ZY20210320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Effects of Ion-Doping at A Site and B Site on Structure and Magnetic Properties of BiFeO3 Nanoparticles. J Supercond Nov Magn 35, 3565–3571 (2022). https://doi.org/10.1007/s10948-022-06383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06383-6

Keywords

Navigation