Skip to main content
Log in

Density-Generalized Theory Study of Electronic Structure, Magnetic, and Optical Properties of Mn-Doped and Mn-X (X = B, C, N, O, and F) Co-doped Arsenenes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The structural stability, electronic structure, and magnetic and optical properties of intrinsic arsenene, Mn-doped, and Mn-X (X = B, C, N, O, and F) co-doped (X atoms replace three As atoms around Mn atoms) arsenene were studied using the GGA + U plane wave super soft pseudopotential method in the framework of spin density-generalized theory. Intrinsic arsenenes are indirect bandgap 1.602 eV non-magnetic semiconductors. All doped systems produce magnetic properties, and Mn-doped (Mn–C and Mn–N co-doped) monolayer arsenene system becomes a half-metal (HM) ferromagnet with 100% spin polarization and can be used in spintronic devices. The Mn–B co-doped system exhibits dilute magnetic semiconductor properties compared to intrinsic arsenene, and both Mn–O and Mn–F co-doped systems exhibit metallic properties. There is a strong charge transfer in the co-doped system, where all Mn atoms lose electrons and all X (X = B, C, N, O, and F) atoms gain electrons. Comparing the formation energies, the formation energies are significantly reduced after doping, where the Mn–N co-doped system has the lowest formation energy, indicating the most stable structure. The Mn–O co-doped monolayer arsenene system has the highest static dielectric constants ε1(0) and ε2(0). The doped system has a significant red shift at the edge of the absorption band and the range of the absorption spectrum is broadened. The reflectance of intrinsic arsenene to light at 6–10 eV is much greater than that of the doped system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zutic, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004). https://doi.org/10.1103/revmodphys.76.323

    Article  ADS  Google Scholar 

  2. Lu, J., Kotov, N.A.: Chiromagnetic properties of semiconductor nanorods. Matter 2, 1089–1090 (2020). https://doi.org/10.1016/j.matt.2020.04.004

    Article  Google Scholar 

  3. Yang, J., Zhang, S., Li, L., Wang, A., Zhong, Z., Chen, L.: Rationally designed high-performance spin filter based on two-dimensional half-metal Cr2NO2. Matter 1, 1304–1315 (2019). https://doi.org/10.1016/j.matt.2019.07.022

    Article  Google Scholar 

  4. Shi, Z., Wang, M., Wu, J.: A spin filter transistor made of topological Weyl semimetal. Appl. Phys. Lett. 107 (2015). https://doi.org/10.1063/1.4930875

  5. Liu, H., Kondo, H., Ohno, T.: Spintronic transport in armchair graphene nanoribbon with ferromagnetic electrodes: half-metallic properties. Nanoscale Res. Lett. 11 (2016). https://doi.org/10.1186/s11671-016-1673-5

  6. Tao, X., Hao, H., Wang, X., Zheng, X., Zeng, Z.: Realizing stable fully spin polarized transport in SiC nanoribbons with dopant. Appl. Phys. Lett. 108 (2016). https://doi.org/10.1063/1.4953599

  7. El Rhazouani, O., Zarhri, Z., Benyoussef, A., El Kenz, A.: Magnetic properties of the fully spin-polarized Sr2CrOsO6 double perovskite: a Monte Carlo simulation. Phys. Lett. A 380, 1241–1246 (2016). https://doi.org/10.1016/j.physleta.2016.02.003

    Article  ADS  Google Scholar 

  8. Li, P., Cai, T.-Y.: Fully spin-polarized quadratic non-Dirac bands realized quantum anomalous Hall effect. Phys. Chem. Chem. Phys. 22, 549–555 (2020). https://doi.org/10.1039/c9cp05132e

    Article  MathSciNet  Google Scholar 

  9. Huan, S., Shi, X., Han, L., Su, H., Wang, X., Zou, Z., Yu, N., Zhao, W., Chen, L., Guo, Y.:  Magnetotransport evidence for the nontrivial topological states in the fully spin-polarized Kondo semimetal CeBi. J. Alloy. Compd. 875 (2021). https://doi.org/10.1016/j.jallcom.2021.159993

  10. Zhou, Z., Zhang, X., Guo, Y., Zhang, Y., Niu, X., Ma, L., Wang, J.: Ultralong lifetime for fully photogenerated spin-polarized current in two-dimensional ferromagnetic/nonmagnetic semiconductor heterostructures. Phys. Rev. B 103 (2021). https://doi.org/10.1103/PhysRevB.103.245411

  11. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  12. Ying-Ying, L., Bo, G., Ying, H., Bing-Kun, C., Jia-Yu, H.: Optoelectronic characteristics and application of black phosphorus and its analogs. Front. Phys. (2021). https://doi.org/10.1007/s11467-021-1052-2

    Article  Google Scholar 

  13. Gao, Y.F., Wen, M.R., Wang, S.X., Yu, H., Zhang, X., Wu, F.G., Dong, H.F.: Two-dimensional arsenene polymorph beyond the auxetic foam: high mechanical sensitivity and large, negative NPR. Phys. Chem. Chem. Phys. 23, 3837–3843 (2021). https://doi.org/10.1039/d0cp05604a

    Article  Google Scholar 

  14. Li, F., Wei, W., Lv, X., Huang, B., Dai, Y.: Evolution of the linear band dispersion of monolayer and bilayer germanene on Cu(111). Phys. Chem. Chem. Phys. 19, 22844–22851 (2017). https://doi.org/10.1039/c7cp03597g

    Article  Google Scholar 

  15. Wu, X., Dai, J., Zhao, Y., Zhuo, Z., Yang, J., Zeng, X.C.: Two-dimensional boron monolayer sheets. Acs. NANO 6, 7443–7453 (2012). https://doi.org/10.1021/nn302696v

    Article  ADS  Google Scholar 

  16. Kou, L., Ma, Y., Tan, X., Frauenheim, T., Du, A., Smith, S.: Structural and electronic properties of layered arsenic and antimony arsenide. J. Phys. Chem. C 119, 6918–6922 (2015). https://doi.org/10.1021/acs.jpcc.5b02096

    Article  Google Scholar 

  17. Zhang, S., Yan, Z., Li, Y., Chen, Z., Zeng, H.: Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angewandte Chemie-Int. Ed. 54, 3112–3115 (2015). https://doi.org/10.1002/anie.201411246

    Article  Google Scholar 

  18. Ares, P., Pakdel, S., Palacio, I., Paz, W.S., Rassekh, M., Rodriguez-San Miguel, D., Aballe, L., Foerster, M., Ruiz del Arbol, N. Angel Martin-Gago, J., Zamora, F., Gomez-Herrero, J.,  Jose Palacios, J.: Few-layer antimonene electrical properties. Appl. Mater. Today 24 (2021). https://doi.org/10.1016/j.apmt.2021.101132

  19. Kumar, A., Sachdeva, G., Pandey, R., Karna, S.P.: Optical absorbance in multilayer two-dimensional materials: graphene and antimonene. Appl. Phys. Lett. 116 (2020). https://doi.org/10.1063/5.0010794

  20. Shi, Z., Zhang, H., Khan, K., Cao, R., Zhang, Y., Ma, C., Tareen, A.K., Jiang, Y., Jin, M.,  Zhang, H.: Two-dimensional materials toward Terahertz optoelectronic device applications. J. Photochem. Photobiol. C-Photochem. Rev. 51 (2022). https://doi.org/10.1016/j.jphotochemrev.2021.100473

  21. Fu, J., Qiu, M., Bao, W., Zhang, H.: Frontiers in electronic and optoelectronic devices based on 2D materials. Adv. Electron. Mater. 7 (2021). https://doi.org/10.1002/aelm.202100444

  22. Ju, J., Ma, J., Wang, Y., Cui, Y., Han, P., Cui, G.: Solid-state energy storage devices based on two-dimensional nano-materials. Energy Storage Mater. 20, 269–290 (2019). https://doi.org/10.1016/j.ensm.2018.11.025

    Article  Google Scholar 

  23. Mao, L., Zhao, X., Wang, H., Xu, H., Xie, L., Zhao, C., Chen, L.: Novel two-dimensional porous materials for electrochemical energy storage: a minireview. Chem. Rec. 20, 922–935 (2020). https://doi.org/10.1002/tcr.202000052

    Article  Google Scholar 

  24. Lan, C., Zhou, Z., Wei, R., Ho, J.C.: Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater. Today Energy 11, 61–82 (2019). https://doi.org/10.1016/j.mtener.2018.10.008

    Article  Google Scholar 

  25. Cao, X., Halder, A., Tang, Y., Hou, C., Wang, H., Duus, J.O., Chi, Q.: Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices. Mater. Chem. Front. 2, 1944–1986 (2018). https://doi.org/10.1039/c8qm00356d

    Article  Google Scholar 

  26. Zhang, S., Hu, Y., Hu, Z., Cai, B., Zeng, H.: Hydrogenated arsenenes as planar magnet and Dirac material. Appl. Phys. Lett. 107 (2015). https://doi.org/10.1063/1.4926761

  27. Mao, X., Zhu, L., Fu, A.: Arsenene, antimonene and bismuthene as anchoring materials for lithium-sulfur batteries: a computational study. Int. J. Quantum Chem. 121 (2021). https://doi.org/10.1002/qua.26661

  28. Li, G., Zhao, Y., Zeng, S., Ni, J.: The realization of half-metal and spin-semiconductor for metal adatoms on arsenene. Appl. Surf. Sci. 390, 60–67 (2016). https://doi.org/10.1016/j.apsusc.2016.08.016

    Article  ADS  Google Scholar 

  29. Zhou, R., Xu, N., Guo, R., Ling, G., Zhang, P.: Preparation of arsenene and its applications in sensors. J. Phys. D-Appl. Phys. 55 (2022). https://doi.org/10.1088/1361-6463/ac38e0

  30. Tian, X.-H., Zhang, J.-M.: The electronic, magnetic and optical properties of single-layer CrS2 with vacancy defects J. Magn. Magn. Mater. 487 (2019). https://doi.org/10.1016/j.jmmm.2019.165300

  31. Valencia, A.M., Caldas, M.J.: Single vacancy defect in graphene: Insights into its magnetic properties from theoretical modeling. Phys. Rev. B 96 (2017). https://doi.org/10.1103/PhysRevB.96.125431

  32. Qin, Z., Liu, P., Feng, M., Zuo, X.: Ferrimagnetism of Ti-adsorbed graphene. IEEE Trans. Magn. 52 (2016). https://doi.org/10.1109/tmag.2015.2512850

  33. Luo, M., Xu, Y.E., Shen, Y.H.: Structural and magnetic properties of transition metal-adsorbed MoS2 monolayer. J. Supercond. Novel Magn. 30, 2849–2854 (2017). https://doi.org/10.1007/s10948-017-4123-4

    Article  Google Scholar 

  34. Wang, Y., Anh, P., Li, S., Yi, J.: Electronic and magnetic properties of transition-metal-doped monolayer black phosphorus by defect engineering. J. Phys. Chem. C 120, 9773–9779 (2016). https://doi.org/10.1021/acs.jpcc.6b00981

    Article  Google Scholar 

  35. Jiang, X., Zhang, X., Xiong, F., Hua, Z., Wang, Z., Yang. S.: Room temperature ferromagnetism in transition metal-doped black phosphorous. Appl. Phys. Lett. 112 (2018). https://doi.org/10.1063/1.5022540

  36. Xu, Z., Hou, Q., Guo, F., Jia, X., Li, C., Li, W.: Effects of strain on the optical and magnetic properties of Ce-doped ZnO. Curr. Appl. Phys. 18, 1465–1472 (2018). https://doi.org/10.1016/j.cap.2018.08.014

    Article  ADS  Google Scholar 

  37. Zhang, M., Wang, X., Wang, X., Wang, Y., Wei, M., Ni, M.-Y.: Effect of strain on the magnetism of Fe-doped MoTe2 monolayer. Mod. Phys. Lett. B 33 (2019). https://doi.org/10.1142/s0217984919503044

  38. Sun, M., Wang, S., Du, Y., Yu, J., Tang, W.: Transition metal doped arsenene: a first-principles study. Appl. Surf. Sci. 389, 594–600 (2016). https://doi.org/10.1016/j.apsusc.2016.07.091

    Article  ADS  Google Scholar 

  39. Liu, M., Chen, Q., Huang, Y., Cao, C., He, Y.: A first-principles study of transition metal doped arsenene. Superlattices Microstruct. 100, 131–141 (2016). https://doi.org/10.1016/j.spmi.2016.09.014

    Article  ADS  Google Scholar 

  40. Luo, M., Xu, Y.E., Song, Y.X.: Ab initio study on nonmetal and nonmagnetic metal atoms doped arsenene. JETP Lett. 106, 434–439 (2017). https://doi.org/10.1134/s0021364017190018

    Article  ADS  Google Scholar 

  41. Choi, W.I., Jhi, S.-H., Kim, K., Kim, Y.-H.: Divacancy-nitrogen-assisted transition metal dispersion and hydrogen adsorption in defective graphene: a first-principles study. Phys. Rev. B 81 (2010). https://doi.org/10.1103/PhysRevB.81.085441

  42. Sharma, D.K., Kumar, S., Auluck, S.: Magnetism by embedding 3d transition metal atoms into germanene. J. Phys. D-Appl. Phys. 51 (2018). https://doi.org/10.1088/1361-6463/aabf2e

  43. Sun, X., Wang, L., Lin, H., Hou, T., Li, Y.: Induce magnetism into silicene by embedding transition-metal atoms. Appl. Phys. Lett. 106 (2015). https://doi.org/10.1063/1.4921699

  44. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J Phys-Condens Matter 14, 2717–2744 (2002). https://doi.org/10.1088/0953-8984/14/11/301

    Article  ADS  Google Scholar 

  45. Perdew, J.P., Burke, K., Ernzerhof, M.: Comment on “Generalized gradient approximation made simple” - Reply. Phys. Rev. Lett. 80, 891–891 (1998). https://doi.org/10.1103/PhysRevLett.80.891

    Article  ADS  Google Scholar 

  46. Zhang, G.-X., Reilly, A.M., Tkatchenko, A., Scheffler, M.: Performance of various density-functional approximations for cohesive properties of 64 bulk solids. New J. Phys. 20 (2018). https://doi.org/10.1088/1367-2630/aac7f0

  47. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. (1992). https://doi.org/10.1103/revmodphys.64.1045

    Article  Google Scholar 

  48. Liu, Z., Li, X., Zhou, C., Hu, T., Zhang, L., Niu, R., Guan, Y., Zhang, N.: First-principles study of structural and electronic properties of substitutionally doped arsenene. Phys E-Low-Dimension Syst Nanostruct 119 (2020). https://doi.org/10.1016/j.physe.2020.114018

  49. Fu B, Feng W, Zhou X and Yao Y (2017) Effects of hole doping and strain on magnetism in buckled phosphorene and arsenene. 2d Materials 4. https://doi.org/10.1088/2053-1583/aa6fa6

  50. Wang, K. L., Li, J., Huang, Y., Lian, M. L., Chen, D. M.: Adsorption of NO gas molecules on monolayer arsenene doped with Al, B, S and Si: a first-principles study. Processes 7 (2019). https://doi.org/10.3390/pr7080538

  51. Du, J., Xia, C., An, Y., Wang, T., Jia, Y.: Tunable electronic structures and magnetism in arsenene nanosheets via transition metal doping. J. Mater. Sci. 51, 9504–9513 (2016). https://doi.org/10.1007/s10853-016-0194-z

    Article  ADS  Google Scholar 

  52. Wang, Y. P., Ji W.X., Zhang C.W, Li, P., Li, F., Ren, M.J., Chen, X.L., Yuan, M., Wang, P.J.: Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene. Sci. Rep. 6 (2016). https://doi.org/10.1038/srep20342

  53. Song, Y., Li, D., Mi, W., Wang, X., Cheng, Y.: Electric field effects on spin splitting of two-dimensional van der Waals arsenene/FeCl2 heterostructures. J. Phys. Chem. C 120, 5613–5618 (2016). https://doi.org/10.1021/acs.jpcc.6b01062

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 51371049), the Natural Science Foundation of Liaoning Province (grant number 20102173), the Educational Department of Liaoning Province (grant number LZGD2019003), and the Educational Department of Liaoning Province (grant number LJGD2019012).

Author information

Authors and Affiliations

Authors

Contributions

Jianlin He: investigation, methodology, validation, visualization, writing—original draft, writing—review and editing. Guili Liu: software, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, software, supervision. Guoying Zhang: writing—review and editing.

Corresponding author

Correspondence to Guili Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Liu, G. & Zhang, G. Density-Generalized Theory Study of Electronic Structure, Magnetic, and Optical Properties of Mn-Doped and Mn-X (X = B, C, N, O, and F) Co-doped Arsenenes. J Supercond Nov Magn 35, 2963–2973 (2022). https://doi.org/10.1007/s10948-022-06354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06354-x

Keywords

Navigation