Skip to main content
Log in

Removal of Heavy Metal (Cadmium) Using Temperature Optimized Novel Rare Earth Garnet (Y3Fe5O12) Through Simple, Robust, and Efficient Adsorption Technique

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This research article presents the current challenges faced by our ecosystem due to depletion and insufficient fresh water bodies. In this current work, a novel holistic approach for the removal of toxic cadmium heavy metal ion from water using yttrium iron garnet is demonstrated. The impact of annealing temperature on the formation of garnet ferrite phase was investigated. The crystal structure analysis was investigated using X-ray diffraction (XRD) and further analyzed using Rietveld refinement technique. The surface morphology and functional groups were analyzed using high-resolution scanning emission microscopy (HR-SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy in detail. The magnetic property variation with respect to annealing temperatures was assessed from the data acquired from vibrating sample magnetometer (VSM) studies done at room temperature. X-ray photoelectron spectroscopy (XPS) chemical analysis technique was used to study the oxidation states of cations in the sample. To our knowledge, the utilization of yttrium iron garnet (YIG) as a magnetic adsorbent is extremely rare. So, in this article, we report the nature, important characteristics, and advantages of utilizing YIG nanoparticles for the eradication of cadmium for the treatment of water using atomic adsorption spectroscopy (AAS) technique. The experimental data was interpreted using adsorption isotherm modelling such as Langmuir and Freundlich isotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anh Thi Le: Swee-Yong Pung. Srimala Sreekantan, Atsunori Matsuda, Mechanisms of removal of heavy metal ions by ZnO particles, Heliyon 5(4), e01440 (2019)

    Google Scholar 

  2. Lal, S., Singhal, A., Kumari, P.: Exploring carbonaceous nanomaterials for arsenic and chromium removal from wastewater. Journal of Water Process Engineering 36, 101276 (2020)

    Article  Google Scholar 

  3. Nasehi, P., Mahmoudi, B., Abbaspour, S.F., Moghaddam, M.S: Cadmium adsorption using novel MnFe2O4-TiO2-UIO-66 magnetic nanoparticles and condition optimization using a response surface methodology, RSC Advances 9(350), 20087–20099 (2019)

  4. Muibat Omotola Fashola: Veronica Mpode Ngole - Jeme, Olubukola Oluranti Babalola, Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health 13(11), 1047 (2016)

    Article  Google Scholar 

  5. Vinosel, V.M., Anand, S., Janifer, M.A., Pauline, S., Dhanavel, S., Praveena, P., Stephen, A.: Enhanced photocatalytic activity of Fe3O4/SnO2 magnetic nanocomposite for the degradation of organic dye. J. Mater. Sci. Mater. Electron. 30(10), 9663–9677 (2019)

    Article  Google Scholar 

  6. Borowiak-Resterna, A., Cierpiszewski, R., Prochaska, K.: Kinetic and equilibrium studies of the removal of cadmium ions from acidic chloride solutions by hydrophobic pyridine carboxamide extractants. J. Hazard. Mater. 179(1–3), 828–833 (2010)

    Article  Google Scholar 

  7. Raghavendra, S. Hebbar, A.M., Isloor, K. Ananda, A.F.: Ismail, Fabrication of antifouling, antimicrobial, well dispersed polydopamine functionalized halloysite nanotube-polyetherimide mixed matrix membranes for the heavy metal removal application, J. Mater. Chem. A. 4 764–774 (2016)

  8. Abbas, A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M., Atieh, M.A: Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology. 157, 141–161 (2016)

  9. Zewail, T.M., Yousef, N.S.: Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alex. Eng. J. 54(1), 83–90 (2015)

    Article  Google Scholar 

  10. Wadhawan, S., Jain, A., Nayyar, J., Mehta, S.K.: Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: a review. J. Water Proc. Eng. 33, 101038

  11. Harikishore, D., Reddy, K., Yun, Y.S.: Spinel ferrite magnetic adsorbents: alternative future materials for water purification, Coordination Chem Rev 315, 90–111 (2016)

  12. Inbaraj, D.J., Chandran, B., Mangalaraj, C.: Bagavath Chandran, Chitra Mangalaraj, Synthesis of CoFe2O4 and CoFe2O4/g-C3N4 nanocomposite via honey mediated sol-gel auto combustion method and hydrothermal method with enhanced photocatalytic and efficient Pb 2+ adsorption property. Materials Research Express 6(5),(2019)

  13. Can, Wu., Jingwei, Tu., Tian, C., Geng, J., Lin, Z., Dang, Z.: Defective magnesium ferrite nano-platelets for the adsorption of As (V): the role of surface hydroxyl groups. Environ. Pollut. 235, 11–19 (2018)

    Article  Google Scholar 

  14. Al Yaqoob, K.M., Bououdina, M.S., Akhter, B., Al Najar, J., Vijaya, J.: Selectivity and efficient Pb and Cd ions removal by magnetic MFe2O4 (M= Co, Ni, Cu and Zn) nanoparticles. Mater. Chem. Phys. 232, 254–264 (2019)

  15. Yu, Y., Yu, L., Shih, K., Paul Chen, J.: Yttrium-doped iron oxide magnetic adsorbent for enhancement in arsenic removal and ease in separation after applications. J. Colloid Interface Sci. 521, 252–260 (2018)

  16. Asisi Janifer,  M.S Anand, S., Maria Vinosel, V., Pauline S.: Investigation of rare earth garnet and its physical properties synthesized by facile sol-gel method. Mater. Today Proc. 8, 337–345 (2019)

  17. Akhtar, M.N., Khan, M.A., Mukhtar Ahmad, G,. Murtaza, R.R., Shaukat, S.F., Asif, M.H.: Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393–400 (2014)

  18. Pradhan, S.K., Panwar, J., Gupta, S.: Jitendra Panwar, and Suresh Gupta. Enhanced heavy metal removal using silver-yttrium oxide nanocomposites as novel adsorbent system, Journal of environmental chemical engineering 5(6), 5801–5814 (2017)

    Google Scholar 

  19. Liu, J., Yu, P., Jin, Q., Zhang, C., Zhang, M.: Harris VG, Microwave-accelerated rapid synthesis of high-quality yttrium iron garnet nano powders with improved magnetic properties. Mater. Res. Lett. 2(6), 36–40 (2018)

  20. Anand, S., Amaliya, A.P., Asisi Janifer, M., Pauline, S.: Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles. Mode. Elect. Mater. 3(4), 168–173 (2017)

  21. Lakshmi, V.: Vijaya. Ranjit Bauri, Soumalya Paul, Effect of fuel type on microstructure and electrical property of combustion synthesized nanocrystalline scandia stabilized zirconia, Materials chemistry and physics 126(3), 741–746 (2011)

    Google Scholar 

  22. Kaliyamoorthy, V., Babu, D.R., Saminathan, M.: Impact of ignition temperature on particle size and magnetic properties of CoFe2O4 nanoparticles prepared by self-propagated MILD combustion technique. J. Magn. Magn. Mater. 418, 280–288 (2016)

  23. Anand, S., Pauline, S., Vinosel, V.M., Janifer, M.A.: Structural Rietveld refinement and vibrational study of M-type BaFe12O19 nanoparticles. Mater. Today Proc. 8, 476–483 (2019)

  24. Aparnadevi, N., Saravana Kumar, K., Manikandan, M., Paul Joseph, D., Venkateswaran, C.: Room temperature dual ferroic behaviour of ball mill synthesized NdFeO3 orthoferrite. J. Appl. Phys. 120(3), 034101 (2016)

  25. Akhtar, M. N., Khan, M.A., Ahmad, M., Murtaza, G., Raza, R., Shaukat, S.F., Asif, M.F.: Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes, Journal of magnetism and magnetic materials 368, 393–400 (2014)

  26. Niyaifar, M., Mohammadpour, H., Dorafshani, M., Hasanpour, A.: Size dependence of non-magnetic thickness in YIG nanoparticles. J. Magn. Magn. Mater. 409, 104–110 (2016)

    Article  ADS  Google Scholar 

  27. Modi, K.B., Dolia, S.N., Sharma, P.U.: Effect of mechanical milling induced strain and particle size reduction on some physical properties of polycrystalline yttrium iron garnet”. Indian J. Phys. 89(5), 425–436 (2015)

    Article  ADS  Google Scholar 

  28. Nasir, N., Yahya, N., Kashif, M., Daud, H.: Majid Niaz Akhtar, Hasnah Mohd Zaid, Afza Shafie, Lee Chaw Teng, Observation of a cubical-like microstructure of strontium iron garnet and yttrium iron garnet prepared via sol–gel technique. J. Nanosci. Nanotechnol. 11(3), 2551–2554 (2011)

    Article  Google Scholar 

  29. Fernandez-Garcia, L.: Marta Suárez, and José Luis Menendez, Synthesis of mono and multidomain YIG particles by chemical coprecipitation or ceramic procedure. J. Alloy. Compd. 495(1), 196–199 (2010)

    Article  Google Scholar 

  30. Sharma, V.: and Bijoy Kumar Kuanr, Magnetic and crystallographic properties of rare-earth substituted yttrium-iron garnet. J. Alloy. Compd. 748, 591–600 (2018)

    Article  Google Scholar 

  31. Sonia, M.M.L., Anand, S., Vinosel, V. M., Janifer, M. A., Pauline, S., Manikandan, A.: Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2-xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)

  32. Sonia, M., Anand, S., Vinosel, V. M., Asisi Janifer, M., Pauline, S.: Effect of lattice strain on structural, magnetic and dielectric properties of sol-gel synthesized nanocrystalline Ce3+ substituted nickel ferrite. J. Mater. Sci. Mater. Electron. 29, 15006–15021

  33. Emami, S., Madaah Hosseini, H.R., Dolati, A.: The effect of cationic and anionic surfactants on the nanostructure and magnetic properties of yttrium iron garnet (YIG) synthesized by a sol-gel auto combustion method. Russ. J. Non-Ferr. Met. 53(4), 308–314 (2012)

  34. Rashad, M.M., Hessien, M.M., El-Midany, A., Ibrahim, I.A.: Effect of synthesis conditions on the preparation of YIG powders via co-precipitation method. J. Magn. Magn. Mater. 321(22), 3752–3757 (2009)

    Article  ADS  Google Scholar 

  35. Zhan Xing, S., Fang, M.H., Chen, D.H., Wei, L.X., Liu, Y.G., Huang, Z.H.: Synthesis of YIG nanopowders by sol-gel method, Trans Tech Publications Ltd. In Key Eng Mater. 368, 582–584

  36. Yu, H., Zeng, L., Chao, Lu., Zhang, W., Guangliang, Xu.: Synthesis of nanocrystalline yttrium iron garnet by low temperature solid state reaction. Mater. Charact. 62(4), 378–381 (2011)

    Article  Google Scholar 

  37. Anand, S., Pauline, S.: Electromagnetic interference shielding properties of BaCo2Fe16O27 nanoplatelets and RGO reinforced PVDF polymer composite flexible films. Adv. Mater. Interfaces 8(3), 2001810 (2021)

    Article  Google Scholar 

  38. Anand, S., Pauline, S.: C Joseph Prabagar, Zr doped Barium hexaferrite nanoplatelets and RGO fillers embedded polyvinylidenefluoride composite films for electromagnetic interference shielding applications. Polym. Testing 86, 106504 (2020)

    Article  Google Scholar 

  39. Yu, Y.: Ling Yu, Kaimin Shih, and. J. Paul Chen, Yttrium-doped iron oxide magnetic adsorbent for enhancement in arsenic removal and ease in separation after applications, Journal of colloid and interface science 521, 252–260 (2018)

    ADS  Google Scholar 

  40. Santhosh, C., Kollu, P., Felix, S., Velmurugan, V.: Soon Kwan Jeong, and Andrews Nirmala Grace, CoFe2O4 and NiFe2O4@ graphene adsorbents for heavy metal ions–kinetic and thermodynamic analysis. RSC Adv. 5(37), 28965–28972 (2015)

    Article  ADS  Google Scholar 

  41. Emami, S., Madaah Hosseini, H.R., Dolati, A.: The effect of cationic and anionic surfactants on the nanostructure and magnetic properties of Yttrium Iron Garnet (YIG) synthesized by a sol-gel auto combustion method. Russ. J. Non-Ferr. Met. 53(4), 308–314 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pauline.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janifer, M.A., Prabagar, C.J., Sonia, M.M.L. et al. Removal of Heavy Metal (Cadmium) Using Temperature Optimized Novel Rare Earth Garnet (Y3Fe5O12) Through Simple, Robust, and Efficient Adsorption Technique. J Supercond Nov Magn 35, 2987–2998 (2022). https://doi.org/10.1007/s10948-022-06322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06322-5

Keywords

Navigation