Skip to main content
Log in

Structures, Spectra, Morphologies, and Magnetic Properties of Pr3+-Substituted Ba Hexaferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Pr-doped M-type barium ferrite with a composition of Ba1−xPrxFe12O19 (0.00 < x < 0.25) was prepared via solid-state sintering combined with high-energy ball milling. The structures, spectra, morphologies, and magnetic properties of Pr3+-substituted Ba hexaferrites were analyzed herein. Under high-energy ball milling, the material produces crystal vacancy defects for elemental doping. The X-ray diffraction results showed that the hexagonal crystal structure was affected when the Pr content (x) was > 0.20. The GSAS refinement results show that the synthesized samples were good. The scanning electron microscopy results and Fourier transform infrared (FT-IR) spectra of the tetrahedral and octahedral sites (FT-IR result of the Fe–O bond = 601 and 448 cm−1 peaks, respectively) of the prepared material proved the formation of a hexagonal crystal structure. The magnetic properties of the samples were measured using a vibrating sample magnetometer at room temperature, and the obtained results demonstrated that the coercivity increased with an increase in the doping amount (from 3815.03 at x = 0 to 4600.56 kOe at x = 0.25). At the same time, the saturation magnetization maintained its high value (> 72.568 emu/g), which is beneficial for preparing permanent magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen, N., Yang, K., Gu, M.: Microwave absorption properties of La-substituted M-type strontium ferrites. J. Alloy Compd. 490, 609–612 (2010)

    Article  Google Scholar 

  2. Wang, Z., Yang, W., Zhou, Z., Jin, M., Xu, J., Sui, Y.: Preparation and magnetic properties of La-substituted strontium hexaferrite by microwave-assisted sol-gel method. J. Supercond. Nov. Magn. 29, 981–984 (2016)

    Article  Google Scholar 

  3. Chang, J., et al.: Structure and magnetic properties of Ba(NiMg)0.2AlxFe11.4-xO19 prepared by sol-gel self-combustion method. J. Synthetic Crystals. 46, 1786–1790 (2017)

  4. Marawichayo, P., et al.: Study the effect of the substitution of Ba with Pr in barium ferrite powder on magnetic properties. J. Adv. Mater. Res. 3482, 1025–1026 (2014)

  5. Kojima, H.: In: E.P. Wohlfarth (Ed.): Ferromagnetic materials: a handbook on the properties of magnetically ordered substances, North-Holland. (1982)

  6. Kim, C.S., Leeand, S.W., An, S.Y.: Mössbauer studies of BaFe11.9Mn0.1O19 by a sol–gel method. J. Appl. Phys. 87, 6244 (2000)

  7. Ounnunkad, S.: Improving magnetic properties of barium hexaferrites by La or Pr substitution Solid. State. Commun. 138, 472 (2006)

    Article  ADS  Google Scholar 

  8. Yuan, K.: Structure and magnetic properties of M type barium ferrite doped with rare earth ions. Guangxi Normal Univ. (2016)

  9. Sun, Y., et al.: Study on absorbing properties of La-doped Z-type barium ferrite/graphene/polyaniline composites. Rare Earth. 40, 52–58 (2019)

    Google Scholar 

  10. Liu, X., et al.: Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites. J. Magn. Magn. Mater. 238, 207–214 (2002)

    Article  ADS  Google Scholar 

  11. Gu, Y., et al.: Structure and magnetic properties of M type barium ferrite doped with lanthanum ion. Rare Earth. 33, 70–74 (2012)

  12. Zhang, W., et al.: Influence of La-Nb co-substituted Sr ferrite on microstructure, spectrum and magnetic properties of hexaferrites. J. Alloys Compd. 871 (2021)

  13. Li, Q., et al.: Preparation of barium ferrite microtubules and influence of lanthanum doping on their properties. J. Inorganic Chem. 25, 312–316 (2009)

  14. Sagayaraj, R., et al.: Microstructure and magnetic properties of Cu0.5Co0.3Mo0.2Fe2O4 ferrite nanoparticles synthesized by coprecipitation method. Appl. Phys. A. 127, 7 (2021)

  15. Hu, J., et al.: Characterization of texture and magnetic properties of Ni0.5Zn0.5TixFe2-xO4 spinel ferrites. J. Magnet. Magnet. Mater. 489 (2019)

  16. Ma, Z., et al.: Effect of crystallization time on absorption properties of M-type barium ferrite J. Synthetic Crystals. 48, 2080–2085 (2019)

  17. Yi, S., et al.: Study on preparation of barium ferrite by mechanical alloying combined with microwave sintering. Nonferrous Metal Eng. 12, 22–27 (2022)

  18. Wu, Z., et al.: Effect of volume fraction of the second phase on Ostwald ripening in a two-phase system. Powder Metallurgy Industry. 26, 58–62 (2016)

    Google Scholar 

  19. Zhong, B., et al.: Study on preparation of Titanium base glass powder by high energy ball milling. J. Funct. Mater. 51, 7092–7096 (2020)

    Google Scholar 

  20. Chen, T.: Preparation of Manganese-zinc ferrite powders by high-energy ball milling. Kunming Univ. Sci. Technol. (2019)

  21. She, Y., et al.: Preparation of manganese zinc ferrite precursor powder by high-energy ball milling. Light Indust Technol. 33, 47–48 (2017)

  22. Yi, S.: Study on the mechanism of high energy ball milling-microwave synergistic effect on mineral phase reconstruction and properties of barium ferrite. Inner Mongolia Univ. Sci. Technol. (2021)

  23. Galvão, S.B., et al.: The effect of the morphology on the magnetic properties of barium synthesized by Pechini method. Mater. Lett. 115, 406–414 (2014)

    Article  Google Scholar 

  24. Tang, J., et al.: Structure and magnetic analyses of hexaferrite Sr1-xLaxFe22+Fe163+O27 prepared via the solid-state reaction. J. Mater. Sci. Mater. Electronics. 30, 1 (2019)

  25. Wang, C., et al.: ChemInform Abstract: Crystal structure of Sr6Y2Al4O15: XRD refinements and first-principle calculations. ChemInform. 43, 40 (2012)

    Google Scholar 

  26. El Sbakhy, F.S., et al.: Structural, spectral, rietveld refinement and cation distribution of nanoferrite NiFe2O4 doped with Mn. Eur. Phys. J. Plus. 136, 5 (2021)

    Article  Google Scholar 

  27. Rai, B.K., et al.: Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd). J. Alloy. Compd. 550, 198–203 (2013)

  28. Zainuri, M., et al.: Absorption electromagnetic waves in X-band range using barium M-hexaferrite dopping Zn ions and polyaniline conductive with variation of thickness coating. Key Eng. Mater. 6061 (2020)

  29. El-Sayed, S.M., et al.: Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite El Shersaby. Phys. B Condens. Matter. 426, 137–143 (2013)

    Article  ADS  Google Scholar 

  30. Zhang, W., et al.: Structural, optical, dielectric, and magnetic properties of Sr0.7La0.3Zn0.3Fe11.7-xAlxO19 hexaferrite synthesized by the solid-state reaction method. J. Solid State Chem. 306 (2022)

  31. Almessiere, M.A., et al.: Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results Phys. 13 (2019)

  32. Wen, L., Liang, W., Zhang, Z.: Mineral Infrared spectroscopy. Chongqing University Press, Chongqing (1988)

    Google Scholar 

  33. Guan, Y., et al.: Preparation of cordyceps sinensis - like barium carbonate microrod by ultrasonic - assisted heating. Bullet. Chin. Ceram. Soc. 37, 1605–1609 (2018)

    Google Scholar 

  34. Yang, Y., et al.: A study on structural, spectral, and magnetic properties of Pr–Bi co-doped M-type barium–strontium hexaferrites via the solid-state reaction method. Appl. Phys. A. 124, 12 (2018)

  35. Weng, S., Xu, Y.: Fourier Transform Infrared Spectrum Analysis. Chemical Industry Press, Beijing (2016)

    Google Scholar 

  36. Auwal, I.A., et al.: Magnetic and dielectric properties of Bi3+substituted SrFe12O19 hexaferrite. J. Magnet. Magnet. Mater. 412, 12995–13003 (2016)

  37. Yang, Y., et al.: Influence of Nd-NbZn co-substitution on structural, spectral and magnetic properties of M-type calcium-strontium hexaferrites Ca0.4Sr0.6-xNdxFe12-x (Nb0.5Zn0.5)xO19. J. Alloys Compd.765, 616–623 (2018)

  38. Güner, S., et al.: Synthesis, characterization and magneto optical properties of BaBixLaxYxFe12–3 xO19 (0.0≤x≤0.33) hexaferrites. J. Magnet. Magnet. Mater. 416, 261–268 (2016)

  39. Zhao, F., et al.: Effect of calcination process and rare earth doping on micronano structure of barium ferrite. Rare Metal Mater. Eng. 42, 60–63 (2013)

    Google Scholar 

  40. Han, Y., Wang, X.: Magnetic properties of rare earth and transition metal substituted M-type barium ferrite. J. Magnet. Mater. Devices. 43(06), 14–19 (2012)

  41. Almessiere, M.A., et al.: Morphology and magnetic traits of strontium nanohexaferrites: effects of manganese/yttrium co-substitution. J. Rare Earths. 37, 124–132 (2019)

    Article  Google Scholar 

  42. Topal, U., et al.: Synthesis and characterization of nanocrystalline BaFe12O19 obtained at 850 °C by using ammonium nitrate melt. J. Magn. Magn. Mater. 284, 416–422 (2004)

    Article  ADS  Google Scholar 

  43. Niu, F., et al.: Preparation and properties of praseodymium doped barium ferrite polypyrrole composite film. J. Mater. Res. 25, 99–103 (2011)

    Google Scholar 

  44. Wei, F.L., et al.: The temperature dependence of magnetic properties of Zn–Ti substituted Ba-ferrite particles for magnetic recording. J. Magn. Magn. Mater. 191, 249–253 (1999)

    Article  ADS  Google Scholar 

  45. Kaur, P., et al.: Structural, magnetic and microwave absorption behavior of Co-Zr substituted strontium hexaferrites prepared using tartaric acid fuel for electromagnetic interference suppression. J. Magnet. Magnet. Mater. 422 (2017)

Download references

Funding

The study received funding supported from the National Natural Science Foundation of China (Grant No.51764045),Science and Technology program of Baotou City of China (Grant No:2019Z3004-5),Inner Mongolia Autonomous Region Science and Technology plan Project (Grant No.2021GG0438) and Inner Mongolia Natural Science Foundation (2020MS05048, 2020BS05029).

Author information

Authors and Affiliations

Authors

Contributions

Pengwei Li: conceptualization, methodology, investigation, writing—original draft, writing—review and editing. Jie Li: resources, supervision. Wenhao Zhang: methodology, software. Kai Yao: investigation, validation. Yonglun Wang: methodology, software.

Corresponding authors

Correspondence to Pengwei Li or Jie Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, J., Zhang, W. et al. Structures, Spectra, Morphologies, and Magnetic Properties of Pr3+-Substituted Ba Hexaferrites. J Supercond Nov Magn 35, 2473–2484 (2022). https://doi.org/10.1007/s10948-022-06294-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06294-6

Keywords

Navigation