Skip to main content
Log in

Effect of Ca Doping on Magnetic Properties of Lanthanum Chromate LaCrO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Doped LaCrO3 has been widely concerned because of its rich physical properties and application potential. The effect of Ca doping on crystal structure and magnetic properties of LaCrO3 was investigated here. Parent phase LaCrO3 and La0.67Ca0.33CrO3 were firstly synthesized in air at different sintering temperature (900 ~ 1500 ℃) to study the phase formation process, before synthesizing a series of La1-xCaxCrO3 (0 ≤ x ≤ 0.5) samples. It was not until the sintering temperature was increased to 1400 ℃ for LaCrO3 that the raw material completely reacted to form single-phase samples. For La0.67Ca0.33CrO3, with the increase of sintering temperature, Ca began to enter the lattice of LaCrO3 (950 ℃), La0.67Ca0.33CrO3 phase with a small amount of unreacted Cr2O3 formed (1050 ℃), and single-phase La0.67Ca0.33CrO3 formed (1200 ℃) successively. A series of single phase La1-xCaxCrO3 samples with x = 0 ~ 0.5 were obtained by sintering at 1400 ℃. Their crystal structure was characterized by X-ray diffraction and refined. Magnetization measurements indicated that magnetic transition temperature was persistently suppressed with increasing Ca doping content, and the magnetic structure below transition temperature has undergone significant changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jiang, S.P., Liu, L., Ong, K.P., Wu, P., Li, J., Pu, J.: Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells. J. Power Sources. 176, 82–89 (2008)

    Article  ADS  Google Scholar 

  2. Lee, G.-Y., Song, R.-H., Kim, J.-H., Peck, D.-H., Lim, T.-H., Shul, Y.-G., Shin, D.-R.: Properties of Cu, Ni, and V doped-LaCrO3 interconnect materials prepared by Pechini, ultrasonic spray pyrolysis and glycine nitrate processes for SOFC. J. Electroceram. 17, 723–727 (2006)

    Article  Google Scholar 

  3. Aliotta, C., Liotta, L.F., Deganello, F., La Parola, V., Martorana, A.: Direct methane oxidation on La1−xSrxCr1−yFeyO3−σ perovskite-type oxides as potential anode for intermediate temperature solid oxide fuel cells. Appl. Catal. B Environ. 180, 424–433 (2016)

    Article  Google Scholar 

  4. Zhou, J.S., Alonso, J.A., Pomjakushin, V., Goodenough, J.B., Ren, Y., Yan, J.Q., Cheng, J.G.: Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO3. Phys. Rev. B 81, 214115 (2010)

    Article  ADS  Google Scholar 

  5. Wang, S., Huang, K., Hou, C., Yuan, L., Wu, X., Lu, D.: Low temperature hydrothermal synthesis, structure and magnetic properties of ReCrO3 (Re = La, Pr, Nd, Sm). Dalton Trans. 44, 17201–17208 (2015)

    Article  Google Scholar 

  6. Zhang, B., Zhao, Q., Chang, A., Li, Y., Liu, Y., Wu, Y.: Electrical conductivity anomaly and X-ray photoelectron spectroscopy investigation of YCr1−xMnxO3 negative temperature coefficient ceramics. Appl. Phys. Lett. 104, 102109 (2014)

    Article  ADS  Google Scholar 

  7. Weber, M.C., Kreisel, J., Thomas, P.A., Newton, M., Sardar, K., Walton, R.I.: Phonon Raman scattering of RCrO3 perovskites (R= Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B 85, 054303 (2012)

    Article  ADS  Google Scholar 

  8. McDannald, A., Kuna, L., Seehra, M.S., Jain, M.: Magnetic exchange interactions of rare-earth-substituted DyCrO3 bulk powders. Phys. Rev. B 91, 224415 (2015)

    Article  ADS  Google Scholar 

  9. Van Der Ziel, J.P., Van Uitert, L.G.: Magnon-assisted optical emission in YCrO3 and LuCrO3. Phys. Rev. 179, 343 (1969)

    Article  ADS  Google Scholar 

  10. Morishita, T., Tsushima, K.: Susceptibility of the weak ferromagnets ErCrO3 and YCrO3 near the critical anomaly. Phys. Rev. B 24, 341 (1981)

    Article  ADS  Google Scholar 

  11. Sakai, N., Yokokawa, H., Horita, T., Yamaji, K.: Lanthanum chromite-based interconnects as key materials for SOFC stack development. Int. J. Appl. Ceram. Techol. 1, 23–30 (2004)

    Article  Google Scholar 

  12. Fu, Y.P., Wang, H.C.: Preparation and characterization of ceramic interconnect La0.8Ca0.2Cr0.9M0.1O3−δ (M=Al Co, Cu, Fe) for IT-SOFCs. Int. J. Hydrog. Energy. 36, 747–754 (2011)

    Article  Google Scholar 

  13. Boroomand, F., Wessel, E., Bausinger, H., Hilpert, K.: Correlation between defect chemistry and expansion during reduction of doped LaCrO3 interconnects for sofcs. Solid. State. Ion. 129, 251–258 (2000)

    Article  Google Scholar 

  14. Lu, Y., Fang, Z., Lu, C., Wei, L., Ni, Y., Xu, Z., Tao, S.: High thermal radiation of Ca-doped lanthanum chromite. RSC. Adv. 5, 30667–30674 (2015)

    Article  ADS  Google Scholar 

  15. Wan, Y., Yang, J., Hou, H., Xu, S., Liu, G., Hussain, S., Qiao, G.: Synthesis and microstructures of La1−xCaxCrO3 perovskite powders for optical properties. J. Mater. Sci. 30, 3472–3481 (2019)

    Google Scholar 

  16. Xie, D., Zhang, K., Li, W., Luo, B., Zhang, H.: Self-propagating rapid synthesis and characterization of LaCrO3 powder. Mater. Lett. 259, 126873 (2020)

    Article  Google Scholar 

  17. Wang, S., Huang, K., Zheng, B., Zhang, J., Feng, S.: Mild hydrothermal synthesis and physical property of perovskite Sr doped LaCrO3. Mater. Lett. 101, 86–89 (2013)

    Article  Google Scholar 

  18. Cai, Z., Jiang, M., Guo, Q., Jiang, X., Chen, S., Sun, H.: Effect of applied pressure on microstructure and properties of hot-pressed Ca-doped LaCrO3 ceramics. Int. J. Appl. Ceram. Technol. 18, 684–696 (2021)

    Article  Google Scholar 

  19. Prado-Gonjal, J., Arevalo-Lopez, A.M., Morán, E.: Microwave-assisted synthesis: a fast and efficient route to produce LaMO3 (M= Al, Cr, Mn, Fe, Co) perovskite materials. Mater. Res. Bull. 46, 222–230 (2011)

    Article  Google Scholar 

  20. Bibi, I., Maqbool, H., Iqbal, S., Majid, F., Kamal, S., Alwadai, N., Iqbal, M.: La1-xGdxCr1-yNiyO3 perovskite nanoparticles synthesis by micro-emulsion route: dielectric, magnetic and photocatalytic properties evaluation. Ceram. Int. 47, 5822–5831 (2021)

    Article  Google Scholar 

  21. Neumeier, J.J., Terashita, H.: Magnetic, thermal, and electrical properties of La1− xCaxCrO3 (0≤x≤0.5). Phys. Rev. B 70, 214435 (2004)

    Article  ADS  Google Scholar 

  22. Hashimoto, T., Tsuzuki, N., Kishi, A., Takagi, K., Tsuda, K., Tanaka, M., Oikawa, K., Kamiyama, T., Yoshida, K., Tagawa, H., Dokiya, M.: Analysis of crystal structure and phase transition of LaCrO3 by various diffraction measurements. Solid. State. Ion. 132, 183–190 (2000)

    Article  Google Scholar 

  23. Oikawa, K., Kamiyama, T., Hashimoto, T., Shimojyo, Y., Morii, Y.: Structural phase transition of orthorhombic LaCrO3 studied by neutron powder diffraction. J. Solid. State. Chem. 154, 524–529 (2000)

    Article  ADS  Google Scholar 

  24. Weiberg, I., Larssen, P.: Electron paramagnetic resonance and antiferromagnetism in LaCrO3. Nature 192, 445–446 (1961)

    Article  ADS  Google Scholar 

  25. Yoshii, K., Nakamura, A.: Reversal of magnetization in La0.5Pr0.5CrO3. J. Solid. State. Chem. 155, 447–450 (2000)

    Article  ADS  Google Scholar 

  26. Tiwari, B., Dixit, A., Naik, R., Lawes, G., Ramachandra Rao, M.S.: Dielectric and optical phonon anomalies near antiferromagnetic ordering in LaCrO3: a possible near room temperature magnetodielectric system. Appl. Phys. Lett. 103, 152906 (2013)

    Article  ADS  Google Scholar 

  27. Lei, S., Liu, L., Wang, C., Wang, C., Guo, D., Zeng, S., Zhou, L.: General synthesis of rare-earth orthochromites with quasi-hollow nanostructures and their magnetic properties. J. Mater. Chem A 1, 11982–11991 (2013)

    Article  Google Scholar 

  28. Daniels, L.M., Weber, M.C., Lees, M.R., Guennou, M., Kashtiban, R.J., Sloan, J., Walton, R.I.: Structures and magnetism of the rare-earth orthochromite perovskite solid solution LaxSm1–xCrO3. Inorg. Chem. 52, 12161–12169 (2013)

    Article  Google Scholar 

  29. Selvadurai, A., Pazhanivelu, V., Jagadeeshwaran, C., Murugaraj, R., Panneer Muthuselvam, I., Chou, F.C., Chandrasekaran, G.: Structural, magnetic and electrical analysis of La1−xNdxCrO3(0.00<x<0.15): synthesised by sol–gel citrate combustion method. J. Sol-Gel. Sci. Technol. 80, 827–839 (2016)

    Article  Google Scholar 

  30. Yoshii, K.: Spin rotation, glassy state, and magnetization switching in RCrO3 (R= La1-xPrx, Gd, and Tm): reinvestigation of magnetization reversal. J. Appl. Phys. 126, 123904 (2019)

    Article  ADS  Google Scholar 

  31. Yoshii, K.: Positive exchange bias from magnetization reversal in La1−xPrxCrO3 (x–0.7–0.85). Appl. Phys. Lett. 99, 142501 (2011)

    Article  ADS  Google Scholar 

  32. Manna, P.K., Yusuf, S.M., Shukla, R., Tyagi, A.K.: Coexistence of sign reversal of both magnetization and exchange bias field in the core-shell type La0.2Ce0.8CrO3 nanoparticles. Appl. Phys. Lett. 96, 242508 (2010)

    Article  ADS  Google Scholar 

  33. Bonet, A., Baben, M., Travitzky, N., Greil, P.: High-temperature electrical conductivity of LaCr1− xCoxO3 ceramics. J. Am. Ceram. Soc. 99, 917–921 (2016)

    Article  Google Scholar 

  34. Liu, X., Su, W., Lu, Z., Liu, J., Pei, L., Liu, W., He, L.: Mixed valence state and electrical conductivity of La1− xSrxCrO3. J. Alloy. Compd. 305, 21–23 (2000)

    Article  Google Scholar 

  35. Chadli, I., Omari, M., Dalo, A.M., Albiss, B.A.: Preparation by sol–gel method and characterization of Zn-doped LaCrO3 perovskite. J. Sol-Gel. Sci. Technol. 80, 598–605 (2016)

    Article  Google Scholar 

  36. Mukherjee, S., Gonal, M.R., Patel, M.K., Roy, M., Patra, A., Tyagi, A.K.: Microstructure characterization and electrical conductivity measurement of La1−xCaxCrO3 (x=0.25, 0.4, 0.5) prepared by aspartic acid-assisted solution combustion. J. Am. Ceram. Soc. 95, 290–295 (2012)

    Article  Google Scholar 

  37. Akashi, T., Maruyama, T., Goto, T.: Transport of lanthanum ion and hole in LaCrO3 determined by electrical conductivity measurements. Solid. State. Ion. 164, 177–183 (2003)

    Article  Google Scholar 

  38. Liu, X., Su, W., Lu, Z.: Study on valence state and electrical conductivity of La1−xCaxCrO3. J. Phys. Chem. Solids 62, 1919–1921 (2001)

    Article  ADS  Google Scholar 

  39. Chen, M., Zhang, H., Liu, T., Jiang, H., Chang, A.: Preparation structure and electrical properties of La1−xBaxCrO3 NTC ceramics. J. Mater. Sci. Mater. Electron. 28, 18873–18878 (2017)

    Article  Google Scholar 

  40. Adaika, K., Omari, M.: Synthesis and physicochemical characterization of LaCr1-xCuxO3. J. Sol-Gel. Sci. Technol. 75, 298–304 (2015)

    Article  Google Scholar 

  41. Qasim, I., Blanchard, P.E.R., Liu, S., Kennedy, B.J.: Impact of Cu doping on the structure and electronic properties of LaCr1−yCuyO3. Inorg. Chem. 53, 2240–2247 (2014)

    Article  Google Scholar 

  42. Weber, W.J., Griffin, C.W., Bates, J.L.: Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70, 265–270 (1987)

    Article  Google Scholar 

  43. Qi, H., Luan, Y., Che, S., Zuo, L., Zhao, X., Hou, C.: Preparation, characterization and electrical properties of Ca and Sr doped LaCrO3. Inorg. Chem. Commu. 66, 33–35 (2016)

    Article  Google Scholar 

  44. Alvarez, G.A., Wang, X.L., Peleckis, G., Dou, S.X., Zhu, J.G., Lin, Z.W.: Magnetotransport and magnetic properties of weak ferromagnetic semiconductors: Ca doped LaCrO3. J. Appl. Phys. 103, 07B916 (2008)

    Article  Google Scholar 

  45. Sakai, N., Fjellvâg, H., Hauback, B.C.: Structural, magnetic, and thermal properties of La1− tCatCrO3− δ. J. Solid. State. Chem. 121, 202–213 (1996)

    Article  ADS  Google Scholar 

  46. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  47. Naik, V.B., Barik, S.K., Mahendiran, R., Raveau, B.: Magnetic and calorimetric investigations of inverse magnetocaloric effect in Pr0.46Sr 0.54 MnO3. Appl. Phys. Lett. 98, 112506 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Yongliang Chen gratefully acknowledges support from the Foundation of Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11104224 and 11004162) and the Research Fund for the Doctoral Program of Higher Education of China (20110184120029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhao or Yongliang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Li, W., Li, M. et al. Effect of Ca Doping on Magnetic Properties of Lanthanum Chromate LaCrO3. J Supercond Nov Magn 35, 1967–1974 (2022). https://doi.org/10.1007/s10948-022-06293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06293-7

Keywords

Navigation