Skip to main content
Log in

Effect of Co3+ substitution on the structure and magnetic properties of La0.6Ca0.4MnO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of cobalt doping on the structure and magnetic properties of polycrystalline La0.6Ca0.4Mn1−x Co x O3 (0 ≤ x≤0.3) has been studied. X-ray powder diffraction and magnetization measurements have been performed. A high-crystallized La0.6Ca0.4Mn1−x Co x O3 with an orthorhombic structure is obtained when the precursor is calcined at 900 °C in air for 3 h. Different amounts of Co3+ ion doping do not lead to the formation of another phase except diffraction peaks shifts slightly. With increase in Co3+ doping from x = 0, 0.1, 0.2, to 0.3, lattice parameters (b value) increase at first, then decrease. Magnetic characterization indicates that specific magnetization of La0.6Ca0.4Mn1−x Co x O3 decreases with the increase of Co3+ additional amount; substitution of Mn by Co3+ ion can markedly increase the coercive field of La0.6Ca0.4Mn1−x Co x O3, attributed that Co3+ doping can decrease Mn3+/Mn4+ ratio in La0.6Ca0.4Mn1−x Co x O3. La0.6Ca0.4Mn0.7Co0.3O3 at 100 K had the highest coercive field value, 1889.7 Oe. The coercive field of La0.6Ca0.4Mn1−x Co x O3 is between 35.1 and 114.7 Oe, even at 200 K, indicating that La0.6Ca0.4MnO3 and doped Co3+ La0.6Ca0.4Mn1−x Co x O3 continue being ferromagnetic at 200 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.A. Gschneidner, V.K. Pecharsky, J. Rare Earths 24, 641–647 (2006)

    Article  Google Scholar 

  2. E. Bruck, O. Tegus, X.W. Li, Phys. B 327, 431–437 (2003)

    Article  Google Scholar 

  3. S.R. Lee, M.S. Anwar, F. Ahmed, B.H. Koo, Trans. Nonferrous Met. Soc. China 24, s141–s145 (2014)

    Article  Google Scholar 

  4. S.O. Manjunatha, A. Rao, V.P.S. Awana, G.S. Okram, J. Magn. Magn. Mater. 394, 130–137 (2015)

    Article  Google Scholar 

  5. X.L. Xu, Y. Li, F.F. Hou, Q. Cheng, R.Z. SU, J. Alloys Compd. 628, 89–96 (2015)

    Article  Google Scholar 

  6. M.A. Bhat, A. Modi, N.K. Gaur, J. Mater. Sci.: Mater. Electron. 26, 6444–6449 (2015)

    Google Scholar 

  7. A. Bouderbala, J. Makni-Chakroun, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, S. Nowak, S. Ammar-Merah, Ceram. Int. 41, 7337–7344 (2015)

    Article  Google Scholar 

  8. M. Ben Rejeb, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, J. Superconduc. Nov. Magn 28, 839–846 (2015)

    Article  Google Scholar 

  9. S. Zhao, J. Zheng, F. Jiang, Y.Y. Song, M. Sun, X.Z. Song, J. Mater. Sci.: Mater. Electron. 26, 8603–8608 (2015)

    Google Scholar 

  10. M. BenRejeb, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, S. Nowak, L. Sicard, S. Ammar-Merah, J. Superconduc. Nov. Magn. 28, 1379–1387 (2015)

    Article  Google Scholar 

  11. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Ceram. Int. 41, 10177–10184 (2015)

    Article  Google Scholar 

  12. W. Chen, Y.Y. Chen, W.W. Wu, T.W. Li, C.Y. Zhang, Y. Zhou, J. Wu, J. Superconduc. Nov. Magn. 29, 115–122 (2016)

    Article  Google Scholar 

  13. T.A. Ho, T.D. Thanh, T.L. Phan, S.K. Oh, S.C. Yu, J. Superconduc. Nov. Magn. 28, 891–894 (2015)

    Article  Google Scholar 

  14. C. Autret, M. Gervais, F. Gervais, N. Raimboux, P. Simon, Solid State Sci. 6, 815–824 (2004)

    Article  Google Scholar 

  15. Y. Sun, M.B. Salamon, W. Tong, Y. Zhang, Phys. Rev. B 66, 094414.1–094414.6 (2002)

    Google Scholar 

  16. R. Dudric, A. Vladescu, V. Rednic, M. Neumann, I.G. Deac, R. Tetean, J. Mol. Struct. 1073, 66–70 (2014)

    Article  Google Scholar 

  17. V. Dayal, S. Keshri, Solid State Commun. 142, 63–66 (2007)

    Article  Google Scholar 

  18. H.G. Zhang, Y.T. Li, L. Xie, J.J. Shi, X.G. Dong, X.P. Ge, H. Liu, Q. Li, J. Magn. Magn. Mater. 393, 62–66 (2015)

    Article  Google Scholar 

  19. N. Modaresi, P. Kameli, H. Salamati, J. Magn. Magn. Mater. 365, 107–114 (2014)

    Article  Google Scholar 

  20. P. Nisha, S. Savitha Pillai, M.R. Varma, K.G. Suresh, Solid State Sci. 14, 40–47 (2012)

    Article  Google Scholar 

  21. D. Ginting, D. Nanto, Y.R. Denny, K. Tarigan, S. Hadi, M. Ihsan, J.S. Rhyee, J. Magn. Magn. Mater. 395, 41–47 (2015)

    Article  Google Scholar 

  22. V. Vashook, D. Franke, J. Zosel, L. Vasylechko, M. Schmidt, U. Guth, J. Alloys Compd. 487, 577–584 (2009)

    Article  Google Scholar 

  23. M.A. Amer, T.M. Meaz, A.G. Mostafa, M. El-Kastawi, A.I. Ghoneim, Ceram. Int. 40, 241–248 (2014)

    Article  Google Scholar 

  24. S. Güner, Md Amir, M. Geleri, M. Sertkol, A. Baykal, Ceram. Int. 41, 10915–10922 (2015)

    Article  Google Scholar 

  25. C. Shang, Z.C. Xia, Z. Jin, L.R. Shi, J.W. Huang, B.R. Chen, M. Wei, L.X. Xiao, L. Liu, Y. Huang, J. Alloys Compd. 588, 53–58 (2014)

    Article  Google Scholar 

  26. L.Q. Qin, M.L. Gao, W.W. Wu, S.Q. Ou, K.T. Wang, B. Liu, X.H. Wu, Ceram. Int. 40, 10857–10866 (2014)

    Article  Google Scholar 

  27. W.W. Wu, J.C. Cai, X.H. Wu, S. Liao, K.T. Wang, L. Tao, Adv. Powder Technol. 24, 154–159 (2013)

    Article  Google Scholar 

  28. X.H. Wu, W.W. Wu, L.Q. Qin, K.T. Wang, S.Q. Ou, K.W. Zhou, Y.J. Fan, J. Magn. Magn. Mater. 379, 232–238 (2015)

    Article  Google Scholar 

  29. D.Y. Lin, Y.K. Sun, Y. Xu, H.L. Gen, Q. Wu, C. Yan, Ceram. Int. 41, 4581–4589 (2015)

    Article  Google Scholar 

  30. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  31. W. Chen, W.W. Wu, S.Q. Liu, J.W. Xu, D.S. Liu, X.H. Wu, Y. Zhou, J. Wu, Mater. Sci. Semicond. Process. 39, 544–550 (2015)

    Article  Google Scholar 

  32. K.W. Zhou, L.Q. Qin, X.H. Wu, W.W. Wu, Y.X. Shen, Y.L. Tian, J.Y. Lu, Ceram. Int. 41, 1235–1241 (2015)

    Article  Google Scholar 

  33. Y. Zhou, W. Chen, Y.X. Shen, X.H. Wu, W.W. Wu, J. Wu, J. Magn. Magn. Mater. 396, 198–203 (2015)

    Article  Google Scholar 

  34. M.A. Gabal, A.Y. Obaid, M. Abdel Salam, W.A. Bayoumy, Mater. Res. Bull. 60, 433–440 (2014)

    Article  Google Scholar 

  35. C.V. Reddy, C. Byon, B. Narendra, D. Baskar, G. Srinivas, J. Shim, S.V. Prabhakar Vattikuti, Superlattices Microstruct. 82, 165–173 (2015)

    Article  Google Scholar 

  36. W. Chen, Y. Zhou, J.Y. Lu, X.S. Huang, W.W. Wu, C.W. Lin, Q. Wang, Ceram. Int. 42, 1114–1121 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Grant No. 21161002) and the Guangxi University Student Innovation Foundation of China (Grant No. 30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Chen, W., Wu, W. et al. Effect of Co3+ substitution on the structure and magnetic properties of La0.6Ca0.4MnO3 . J Mater Sci: Mater Electron 27, 5395–5402 (2016). https://doi.org/10.1007/s10854-016-4440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4440-6

Keywords

Navigation