Skip to main content
Log in

Fe-Si-Al Soft Magnetic Composites with Significantly Reduced Core Loss via Constructing Uniform TiO2 Insulation Layer

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Core–shell structured Fe-Si-Al@TiO2 with uniform coating layers have been used for preparing soft magnetic composites (SMCs) with good magnetic properties. The quality of the TiO2 insulation layer has been optimized by tuning the content of tetrabutyl titanate (TBOT), the reaction time, and the volume of acetic acid. It is proved that the conditions of 5 ml TBOT, 1-h reaction time, and 100 µl acetic acid would lead to uniform and dense TiO2 layer. As a result, the high-frequency eddy-current loss can be effectively decreased, which is related with increased resistivity. Moreover, optimal Fe-Si-Al@TiO2 powders would ensure high density of SMCs, resulting in high effective permeability and low hysteresis loss. When the effective permeability of optimal SMCs reaches 85 (measured at 100 kHz/1 V), the core loss is only 691.33 mW/cm3 (measured at 500 kHz/50 mT), which is much lower than those of Fe-Si-Al SMCs insulated with Al2O3 and phosphate. Owing to high-quality TiO2 insulating layer, as-prepared SMCs show unique superiority in achieving high effective permeability and low core loss simultaneously, in contrast with other reported SMCs. This work may provide novel insights into the synthesis of SMCs with excellent magnetic properties via building uniform oxide coating layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hemmati, I., Hosseini, H.M., Kianvash, A.: The correlations between processing parameters and magnetic properties of an iron-resin soft magnetic composite. J. Magn. Magn. Mater. 305, 147–151 (2006). https://doi.org/10.1016/j.jmmm.2005.12.004

    Article  ADS  Google Scholar 

  2. Bensalem, R., Tebib, W., Alleg, S., Suñol, J.J., Bessais, L., Greneche, J.M.: Magnetic properties of nanostructured Fe92P8 powder mixture. J. Alloy. Compd. 471, 24–27 (2009). https://doi.org/10.1016/j.jallcom.2008.03.138

    Article  Google Scholar 

  3. Chang, C.T., Guo, J.J., Li, Q., Zhou, S.M., Liu, M., Dong, Y.Q.: Improvement of soft magnetic properties of FeSiBPNb amorphous powder cores by addition of FeSi powder. J. Alloy. Compd. 788, 1177–1181 (2019). https://doi.org/10.1016/j.jallcom.2019.02.301

    Article  Google Scholar 

  4. Shokrollahi, H., Janghorban, K.: Soft magnetic composite materials (SMCs). J. Mater. Process. Tech. 189, 1–15 (2007). https://doi.org/10.1016/j.jmatprotec.2007.02.034

    Article  Google Scholar 

  5. Shokrollahi, H., Janghorban, K., Mazaleyrat, F., Bue, M.L., Ji, V., Tcharkhtchi, A.: Investigation of magnetic properties, residual stress and densification in compacted iron powder specimens coated with polyepoxy. Mater. Chem. Phys. 114, 588–594 (2009). https://doi.org/10.1016/j.matchemphys.2008.10.013

    Article  Google Scholar 

  6. Taghvaei, A.H., Shokrollahi, H., Janghorban, K.: Structural studies, magnetic properties and loss separation in iron-phenolicsilane soft magnetic composites. Mater. Design 31, 142–148 (2010). https://doi.org/10.1016/j.matdes.2009.06.044

    Article  Google Scholar 

  7. Luo, F., Fan, X.A., Luo, Z.G., Hu, W.T., Li, G.Q., Li, Y.W., Liu, X., Wang, J.: Ultra-low inter-particle eddy current loss of Fe3Si/Al2O3 soft magnetic composites evolved from Fe-Si-Al/Fe3O4 core-shell particles. J. Magn. Magn. Mater. 484, 218–224 (2019). https://doi.org/10.1016/j.jmmm.2019.04.027

    Article  ADS  Google Scholar 

  8. Guo, Z., Wang, J., Chen, W., Chen, D., Sun, H., Xue, Z., Wang, C.E.: Crystal-like microstructural Finemet/FeSi compound powder core with excellent soft magnetic properties and its loss separation analysis. Mater. Design 192, 108769 (2020). https://doi.org/10.1016/j.matdes.2020.108769

    Article  Google Scholar 

  9. Kollár, P., Birčáková, Z., Füzer, J., Bureš, R., Fáberová, M.: Power loss separation in Fe based composite materials. J. Magn. Magn. Mater. 327, 146–150 (2013). https://doi.org/10.1016/j.jmmm.2012.09.055

    Article  ADS  Google Scholar 

  10. Wu, S., Sun, A., Zhai, F., Wang, J., Zhang, Q., Xu, W., Logan, P., Volinsky, A.A.: Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites. J. Magn. Magn. Mater. 324, 818–822 (2012). https://doi.org/10.1016/j.jmmm.2011.09.026

    Article  ADS  Google Scholar 

  11. Taghvaei, A.H., Shokrollahi, H., Janghorban, K.: Properties of iron-based soft magnetic composite with iron phosphate-silane insulation coating. J. Alloy. Compd. 481, 681–686 (2009). https://doi.org/10.1016/j.jallcom.2009.03.074

    Article  Google Scholar 

  12. Zhang, Y., Zhou, T.D.: Structure and electromagnetic properties of Fe-Si-Al particles coated by MgO. J. Magn. Magn. Mater. 426, 680–684 (2017). https://doi.org/10.1016/j.jmmm.2016.10.144

    Article  ADS  Google Scholar 

  13. Zhong, X.X., Phuoc, N.N., Soh, W.T., Ong, C.K., Peng, L., Li, L.Z.: Tailoring the magnetic properties and thermal stability of Fe-Si-Al-Al2O3 thin films fabricated by hybrid oblique gradient-composition sputtering. J. Magn. Magn. Mater. 429, 52–59 (2017). https://doi.org/10.1016/j.jmmm.2017.01002

    Article  ADS  Google Scholar 

  14. Peng, Y.D., Nie, J.W., Zhang, W.J., Ma, J., Bao, C.X., Cao, Y.: Effect of the addition of Al2O3 nanoparticles on the magnetic properties of Fe soft magnetic composites. J. Magn. Magn. Mater. 399, 88–93 (2016). https://doi.org/10.1016/j.jmmm.2015.09.069

    Article  ADS  Google Scholar 

  15. Fan, X.A., Wang, J., Wu, Z.Y., Li, G.Q.: Core-shell structured Fe-Si-Al/SiO2 particles and Fe3Si/Al2O3 soft magnetic composite cores with tunable insulating layer thicknesses. Mater. Sci. Eng. B-Adv. 201, 79–86 (2015). https://doi.org/10.1016/j.mseb.2015.08.009

    Article  Google Scholar 

  16. Wang, J., Fan, X.A., Wu, Z.Y., Li, G.Q.: Intergranular insulated Fe/SiO2 soft magnetic composite for decreased core loss. Adv. Powder Technol. 27, 1189–1194 (2016). https://doi.org/10.1016/j.apt.2016.04.002

    Article  Google Scholar 

  17. Hou, Z.G., Yan, P.F., Sun, B., Elshekh, H., Yan, B.: An excellent soft magnetic Fe/Fe3O4-Fe-Si-Al composite with high permeability and low core loss. Results Phys. 14, 102498 (2019). https://doi.org/10.1016/j.rinp.2019.102498

    Article  Google Scholar 

  18. Zhou, L., Huang, J.L., Wang, H.B., Chen, M., Dong, Y.L., Zheng, F.K.: Fe-Si-Al/ZnO-filled resin composite coatings with enhanced dielectric and microwave absorption properties. J. Mater. Sci.: Mater. El. 30, 1896–1906 (2019). https://doi.org/10.1007/s10854-018-0463-5

  19. Zhou, L., Yu, J.J., Chen, M., Wang, H.B., Wang, Z.J., Su, X.H.: Influence of particle size on the microwave absorption properties of Fe-Si-Al/ZnO-filled resin composite coatings. J. Mater. Sci.: Mater. El. 31, 2446–2453 (2020). https://doi.org/10.1007/s10854-019-02781-0

  20. Shi, X.Y., Chen, X.Y., Wan, K., Zhang, B.W., Duan, P.T., Zhang, H., Zeng, X.D., Liu, W., Su, H.L., Zou, Z.Q., Du, Y.W.: Enhanced magnetic and mechanical properties of gas atomized Fe-Si-Al soft magnetic composites through adhesive insulation. J. Magn. Magn. Mater. 534, 168040 (2021). https://doi.org/10.1016/j.jmmm.2021.168040

    Article  Google Scholar 

  21. Zhou, B., Dong, Y.Q., Liu, L., Chang, L., Bi, F.Q., Wang, X.M.: Enhanced soft magnetic properties of the Fe-based amorphous powder cores with novel TiO2 insulation coating layer. J. Magn. Magn. Mater. 474, 1–8 (2019). https://doi.org/10.1016/j.jmmm.2018.11.014

    Article  ADS  Google Scholar 

  22. Cui, Z., Luo, Y., Yu, J., Xu, Y.J.: Tuning the electronic properties of MoSi2N4 by molecular doping: a first principles investigation. Physica. E 134, 114873 (2021). https://doi.org/10.1016/j.physe.2021.114873

    Article  Google Scholar 

  23. Cui, Z., Wang, M.J., Lyu, N., Zhang, S., Ding, Y.C., Bai, K.F.: Electronic, magnetism and optical properties of transition metals adsorbed puckered arsenene. Superlattice. Microst. 152, 106852 (2021). https://doi.org/10.1016/j.spmi.2021.106852

    Article  Google Scholar 

  24. Afta, F., Tanveer, S., Rehman, S.U., Ghafoor, S., Duran, H., Kirchhoff, K., Lieberwirth, I., Arshad, S.N.: Encapsulation of Fe/Fe3O4 in carbon nanotubes grown over carbon nanofibers for high performance supercapacitor electrodes. Synthetic Met. 269, 116575 (2020). https://doi.org/10.1016/j.synthmet.2020.116575

    Article  Google Scholar 

  25. Li, H., Yin, Z.Y., Deng, L.B., Wang, S., Fu, Z., Ma, Y.H.: Effect of SiO2/Al2O3 ratio on the structure and electrical properties of MgO–Al2O3–SiO2 glass-ceramics doped with TiO2. Mater. Chem. Phys. 256, 123653 (2020). https://doi.org/10.1016/j.matchemphys.2020.123653

    Article  Google Scholar 

  26. Chung, C., Lee, W.H.: Effect of pretreatment on Al2O3 substrate by depositing Al2O3 film on the properties of Ni–Cr–Si based thin film resistor. Mater. Chem. Phys. 234, 311–317 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.058

    Article  Google Scholar 

  27. Hon, K., Couet, S., Kumar, K., Sethu, V., Swerts, J., Kar, G.S.: Effect of nitrogen doping on the structure of metastable β-W on SiO2. Thin Solid Films 732, 138795 (2021). https://doi.org/10.1016/j.tsf.2021.138795

    Article  ADS  Google Scholar 

  28. Liu, Z.M., Zhang, J.L., Han, B.X., Du, J.M., Mu, T.C., Wang, Y., Sun, Z.Y.: Solvothermal synthesis of mesoporous Eu2O3-TiO2 composites. Micropor. Mesopor. Mat. 81, 169–174 (2005). https://doi.org/10.1016/j.micromeso.2005.01.028

    Article  Google Scholar 

  29. Wijnja, H., Schulthess, C.P.: ATR-FTIR and DRIFT spectroscopy of carbonate species at the aged g- Al2O3/water interface. Spectrochim. Acta A 55, 861–872 (1999). https://doi.org/10.1016/s1386-1425(98)00236-4

    Article  ADS  Google Scholar 

  30. Yang, L., Wang, W., Zhang, H., Wang, S., Zhang, M., He, G., Lv, J., Zhu, K., Sun, Z.: Electrodeposited Cu2O on the 101 facets of TiO2 nanosheet arrays and their enhanced photoelectrochemical performance. Sol. Energ. Mat. Sol. C. 165, 27–35 (2017). https://doi.org/10.1016/j.solmat.2017.02.026

    Article  Google Scholar 

  31. Sham, T.K., Lazarus, M.S.: X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces. Chem. Phys. Lett. 68, 426–432 (1979). https://doi.org/10.1016/0009-2614(79)87231-0

    Article  ADS  Google Scholar 

  32. Yang, L., Yao, C.J., Wang, R.Y., Jiang, L., Zhu, W.J., Wang, M.Y., Liu, L.L., Liang, D.W., Hu, L., Den, C.H., Yin, Q.Y., Zhang, M., He, G., Lv, J.G., Sun, Z.Q.: Novel Fe2O3/{101}TiO2 nanosheet array films with stable hydrophobicity and enhanced photoelectrochemical performance. Mater. Chem. Phys. 275, 125226 (2022). https://doi.org/10.1016/j.matchemphys.2021.125226

    Article  Google Scholar 

  33. Chi, Q., Chang, L., Dong, Y.Q., Zhang, Y.Q., Zhou, B., Zhang, C.Z., Pan, Y., Li, Q., Li, J.W., He, A., Wang, X.M.: Enhanced high frequency properties of FeSiBPC amorphous soft magnetic powder cores with novel insulating layer. Adv. Powder Technol. 32, 1602–1610 (2021). https://doi.org/10.1016/j.apt.2021.03.017

    Article  Google Scholar 

  34. Zhong, X.X., Chen, J.C., Wang, L., Li, B.J., Li, L.Z.: Properties of Fe-Si-Al-based soft magnetic composites with AlN/Al2O3 and hybrid phosphate-silane insulation coatings. J. Alloy. Compd. 735, 1603–1610 (2018). https://doi.org/10.1016/j.jallcom.2017.11.312

    Article  Google Scholar 

  35. Bertotti, G.: General properties of power losses in soft ferromagnetic materials. IEEE. T. Magn. 24, 621–630 (1988). https://doi.org/10.1109/20.43994

    Article  ADS  Google Scholar 

  36. Liu, H.J., Su, H.L., Geng, W.B., Sun, Z.G., Song, T.T., Tong, X.C., Zou, Z.Q., Wu, Y.C., Du, Y.W.: Effect of particle size distribution on the magnetic properties of Fe-Si-Al powder core. J. Supercond. Nov. Magn. 29, 463–468 (2016). https://doi.org/10.1007/s10948-015-3282-4

    Article  Google Scholar 

  37. Li, J., Peng, X.L., Yang, Y.T., Ge, H.L.: Preparation and characterization of MnZn/Fe-Si-Al soft magnetic composites. J. Magn. Magn. Mater. 426, 132–136 (2017). https://doi.org/10.1016/j.jmmm.2016.11.068

    Article  ADS  Google Scholar 

  38. Ni, L., Hu, F., Feng, S.J., Kan, X.C., Han, Y.Y., Liu, X.S.: Soft magnetic properties of FeSiAl/carbonyl iron composites with high magnetic permeability and low magnetic loss. J. Alloy. Compd. 887, 161337 (2021). https://doi.org/10.1016/j.jallcom.2021.161337

    Article  Google Scholar 

  39. Ni, L., Duan, F., Feng, S.J., Hu, F., Kan, X.C., Liu, X.S.: High performance of FeSiAl/hBN soft magnetic composites. J. Alloy. Compd. 897, 163191 (2022). https://doi.org/10.1016/j.jallcom.2021.163191

    Article  Google Scholar 

  40. Zhou, B., Chi, Q., Dong, Y.Q., Liu, L., Zhang, Y.Q., Chang, L., Pan, Y., He, A., Li, J.W., Wang, X.M.: Effects of annealing on the magnetic properties of Fe-based amorphous powder cores with inorganic-organic hybrid insulating layer. J. Magn. Magn. Mater. 494, 165827 (2020). https://doi.org/10.1016/j.jmmm.2019.165827

    Article  Google Scholar 

Download references

Funding

This work was supported by the Major Project of Science and Technology Innovation 2025 in Ningbo City, China (No. 2020Z062), the Science and Technology Project of State Grid Corporation of China (No. 5500-202118252A-0–0-00), the Huaian Transformation Project of Sci-tech Achievement (No. HA201907), the Fundamental Research Funds for the Central Universities (No. JZ2021HGTA0174), and the Grant Project of Shenzhen Microgate Technology Co. Ltd (2021–2024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu, Hailin Su or Jinzhi Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Cao, Z., Zeng, X. et al. Fe-Si-Al Soft Magnetic Composites with Significantly Reduced Core Loss via Constructing Uniform TiO2 Insulation Layer. J Supercond Nov Magn 35, 1975–1985 (2022). https://doi.org/10.1007/s10948-022-06289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06289-3

Keywords

Navigation