Skip to main content

Advertisement

Log in

A Promising Half-Metallic MXene Monolayer Ti2ZnC2 Induced by the Charge States

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The Ti-based MXenes have aroused the enthusiastic attention due to their discovered application in electronics, optics, energy storage and Li-ion batteries. In order to broaden their application into the spintronics, the half-metallic Ti-based MXenes should be studied in system. In this paper, a MXene monolayer Ti2ZnC2 was proposed as a highly spin-polarized 2D nanomaterials based on the first-principles calculation. Significantly, the monolayer Ti2ZnC2 is a promising half-metallic 2D nanomaterial in positive charge states. If the charge states vary from n =  + 1 to n =  + 4, the magnetic moments of the 2 × 2 × 1 Ti2ZnC2 supercell decrease from 7.00 µB to 4.00 µB per unit (integer magnetic moments), indicating the half-metallicity of this monolayer is stable. The half-metallicity and the magnetic moments are contributed mainly by the spin-polarized Ti-ions. In the charge state n =  + 4, if the strains vary from + 3.0 to − 3.0%, the half-metallicity of this monolayer keeps well. If the strains on the monolayer decrease, the half-metallic gaps of the monolayer increase, inferring that the half-metallicity of the MXene monolayer may be improved by compressive strains. The electronic structure of a Ti-ion in the charge state n =  + 4 is analyzed as t32gt32geg1↑ based on the crystal field theory, from which the magnetic moment of this monolayer is 4.00 µB, agreeing well with calculated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, D., Kaner, R.B.: Science 320(5880), 1170 (2008)

    Article  Google Scholar 

  2. Cui, Z., Luo, Y., Yu, J., et al.: Physica E. 134, 114873 (2021)

  3. Ren, K., Qin, H., Liu, H., et al.: Adv. Funct. Mater. 2110846 (2022)

  4. Cui, Z., Wang, M., Lyu, N., et al.: Superlattices Microstruct. 152, 106852 (2021)

  5. Kim, K., Choi, J.Y., Kim, T., et al.: Nature 479(7373), 338–344 (2011)

    Article  ADS  Google Scholar 

  6. Shahrokhi, M., Mortazavi, B.: Comp. Mater. Sci. 143, 103 (2018)

    Article  Google Scholar 

  7. Wang, B., Yuan, S., Li, Y., et al.: Nanoscale 9(17), 5577 (2017)

    Article  MathSciNet  Google Scholar 

  8. Ren, K., Shu, H., Huo, W., et al.: Phys. Chem. Chem. Phys. 23(43), 24915 (2021)

    Article  Google Scholar 

  9. Zhang, L.Z., Wang, Z.F., Du, S.X., et al.: Phys. Rev. B. 90(16), 161402 (2014)

  10. Sundaram, R.S., Engel, M., Lombardo, A., et al.: Nano. Lett. 13(4), 1416 (2013)

    Article  ADS  Google Scholar 

  11. Xu, M., Liang, T., Shi, M., et al.: Chem. Rev. 113(5), 3766–3798 (2013)

    Article  Google Scholar 

  12. Bhimanapati, G.R., Lin, Z., Meunier, V., et al.: ACS Nano. 9(12), 11509–11539 (2015)

    Article  Google Scholar 

  13. Naguib, M., Mochalin, V.N., Barsoum, M.W., et al.: Adv. Mater. 26, 992 (2014)

    Article  Google Scholar 

  14. Xu, J., Shim, J., Park, J.H., et al.: Adv. Func. Mater. 26, 5328 (2016)

    Article  Google Scholar 

  15. Liu, Y., Xiao, H., Goddard, W.A.: J. Am. Chem. Soc. 138, 15853 (2016)

    Article  Google Scholar 

  16. Ling, Z., Ren, C.E., Zhao, M.Q., et al.: Proc. Natl. Acad. Sci. 111, 16676 (2014)

    Article  ADS  Google Scholar 

  17. Guo, Z., Zhou, J., Si, C., et al.: Phys. Chem. Chem. Phys. 17, 15348 (2015)

    Article  Google Scholar 

  18. Tang, R., Xiong, S., Gong, D., et al.: ACS Appl. Mater. Interfaces. 12(51), 56663–56680 (2020)

  19. Naguib, M., Kurtoglu, M., Presser, V., et al.: Adv. Mater. 23(37), 4248–4253 (2011)

    Article  Google Scholar 

  20. Li, Z., Wang, L., Sun, D., et al.: Mater. Sci. Eng., B 191, 33–40 (2015)

    Article  Google Scholar 

  21. Peng, C., Wei, P., Chen, X., et al.: Ceram. Int. 44(15), 18886–18893 (2018)

    Article  Google Scholar 

  22. Borysiuk, V., Mochalin, V.N.: MRS Commun. 9(1), 203–208 (2019)

    Article  Google Scholar 

  23. Lv, P., Li, Y.L., Wang, J.F.: Phys. Chem. Chem. Phys. 22(20), 11266–11272 (2020)

    Article  Google Scholar 

  24. Li, Y.L., Lv, P.: Physica B Condens. Matter. 413183 (2021)

  25. Wu, F., Luo, K., Huang, C., et al.: Solid Stat. Commun. 222, 9 (2015)

    Article  ADS  Google Scholar 

  26. Ren, K., Zheng, R., Xu, P., et al.: Nanomaterials 11(9), 2236 (2021)

    Article  Google Scholar 

  27. Dieny, B., Prejbeanu, I.L., Garello, K., et al.: Nat. Electron. 3(8), 446 (2020)

    Article  Google Scholar 

  28. Liu, Y., Zeng, C., Zhong, J., et al.: Nano-Micro Lett. 12(1), 1 (2020)

    Article  ADS  Google Scholar 

  29. Roy, D., Hossain, M.K., Hasan, S.M., et al.: Mater. Sci. Eng. B. 271, 115247 (2021)

  30. Banerjee, H., Barone, P., Picozzi, S.: 2D Mater. 8(2), 025027 (2021)

  31. Mogulkoc, A., Modarresi, M., Rudenko, A.N.: Phys. Rev. B. 102(2), 024441 (2020)

  32. Zhou, T.Y., Zhao, W., Yang, K.: Appl. Sci. 10, 2450 (2020)

    Article  Google Scholar 

  33. Jia, W., Fu, J., Cao, Z., et al.: J. Comput. Phys. 251, 102–115 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Jia, W., Cao, Z., Wang, L., et al.: Comput. Phys. Commun. 184(1), 9–18 (2013)

    Article  ADS  Google Scholar 

  35. Zhang, R.Z., Cui, X.H., Cui, H.L., et al.: Appl. Surf. Sci. 152360 (2022)

  36. Xiao, Y., Zhang, W.: Appl. Surf. Sci. 513, 145883 (2020)

  37. Er, D., Li, J., Naguib, M., et al.: ACS Appl. Mater. Interfaces. 6(14), 11173 (2014)

  38. Yu, Y.X.: J. Phys. Chem. C. 120(10), 5288–5296 (2016)

  39. Mashtalir, O., Naguib, M., Mochalin, V.N., et al.: Nat. Commun. 4, 1716 (2013)

    Article  ADS  Google Scholar 

  40. Firestein, K.L., von Treifeldt, J.E., Kvashnin, D.G., et al.: Nano Lett. 20(8), 5900–5908 (2020)

    Article  ADS  Google Scholar 

  41. Yang, J., Zhou, X., Luo, X., et al.: Appl. Phys. Lett. 109(20), 203109 (2016)

  42. Sun, Q., Li, Z., Searles, D.J., et al.: J. Am. Chem. Soc. 135, 8246 (2013)

    Article  Google Scholar 

  43. Kanai, Y., Khalap, V.R., Collins, P.G., et al.: Phys. Rev. Lett. 104, 066401 (2010)

  44. He, C., Wang, R., Xiang, D., et al.: Appl. Surf. Sci. 509, 145392 (2020)

  45. Kleemann, W.J.: Appl. Phys. 114(2), 027013 (2013)

  46. Huang, C.C., Wang, Y., Yan, Q., et al.: J. Phys. Condens. Matter. 34(10), 105301 (2022)

  47. Yang, S., Chen, Y., Jiang, C.: InfoMat. 3(4), 397 (2021)

    Article  Google Scholar 

  48. Zhao, S., Kang, W., Xue, J.: Appl. Phys. Lett. 104(13), 133106 (2014)

  49. Liu, B.G.: Phys. Rev. B. 67(17), 172411 (2003)

Download references

Acknowledgements

We gratefully acknowledge funding supporting from the Scientific and Technological Research of Chongqing Municipal Education Commission (KJZD-K202100602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Jun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Lian-Yan, W., Cheng-Cai, H. et al. A Promising Half-Metallic MXene Monolayer Ti2ZnC2 Induced by the Charge States. J Supercond Nov Magn 35, 2127–2134 (2022). https://doi.org/10.1007/s10948-022-06244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06244-2

Keywords

Navigation