Skip to main content
Log in

Studies on the Structural Properties and Band Gap Engineering of Ag+-Modified MgFe2O4 Nanomaterials Prepared by Low-Cost Sol–Gel Method for Multifunctional Application

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This research reports an investigation on the effect of Ag+ substitution in MgFe2O4 nanomaterials. The Ag+-substituted MgFe2O4 nanomaterials were successfully prepared by a citrate precursor method at 550 °C for 2 h. The TG–DTA confirmed the annealing temperature beyond 400 °C to get crystalline phase. The XRD analysis revealed the formation of pure crystalline phase of MgFe2O4 with cubic spinel structure (Fd-3 m space group) along with the metallic peaks of Ag+. The crystallite size of the entire MgAgxFe2-xO4 samples (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) was found between 10 and 22 nm using Scherer’s equation, which decreased with increase in Ag+ content. To achieve refined diffraction parameters, Rietveld refinement was executed for entire samples. The lattice strain (ε) was also calculated using W–H plot for all samples, which ranged from − 2.11 × 10−3 to 5.98 × 10−3. The SEM micrographs have shown porous structures in the prepared samples, which decreased with the increase in Ag+ content. The existence of metal oxide bonds between 423 and 571 cm−1 points towards spinel phase of MgFe2O4 by FTIR. The increase in Ag+ content has resulted in the increase of the direct and indirect band gaps of prepared materials. The average particle size was approximately measured to be 19.23 nm and 12.76 nm for MgFe2O4 and MgAgFeO4, respectively, by HRTEM. Magnetic measurements revealed that the coercivity (Hc) decreased, but saturation magnetization (Ms) and retentivity (Mr) increased with the increase in Ag+ content. The material thus prepared may exhibit excellent properties for its applications in antimicrobial activity, biomedicine and electronics industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Murugesan, C., Chandrasekaran, G.: Enhanced electrical and magnetic properties of annealed magnesium ferrite nanoparticles. J. Supercond. Nov. Magn. (2016) https://doi.org/10.1007/s10948-015-3198-z

  2. Loganathan, A., Kumar, K.: Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures. Appl. Nanosci. 6, 629–639 (2016)

    Article  ADS  Google Scholar 

  3. Montha, W., Maneeprakorn, W., Buatong, N., Tang, I.M.: On, Synthesis of doxorubicin-PLGA loaded chitosan stabilized (Mn, Zn) Fe2O4 nanoparticles: biological activity and pH-responsive drug release. Mater. Sci. Eng. C 59, 235–240 (2016)

    Article  Google Scholar 

  4. Wu, J., Jiang, W., Shen, Y., Jiang, W., Tian, R.: Synthesis and characterization of mesoporous magnetic nanocomposites wrapped with chitosan gatekeepers for pH sensitive controlled release of doxorubicin. Mater. Sci. Eng. C 70, 132–140 (2017)

    Article  Google Scholar 

  5. Bigham, A., Foroughi, F., Motamedi, M., Rafienia, M.: Multifunctional nanoporous magnetic zinc silicate-ZnFe2O4 core-shell composite for bone tissue engineering applications. Ceram. Int. 44, 11798–11806 (2018)

    Article  Google Scholar 

  6. Wang, G., Zhou, F., Li, X., Li, J., Ma, Y., Mu, J., Zhang, Z., Che, H., Zhang, X.: Controlled synthesis of L-cysteine coated cobalt ferrite nanoparticles for drug delivery. Ceram. Int. 44, 13588–13594 (2018)

    Article  Google Scholar 

  7. Ramosn, E.M.M., Chavez, V.G., Macias-Martínez, B.I., Lopez-Badillo, C.M., García-Cerda, L.A.: Synthesis and characterization of maghemite nanoparticles for hyperthermia applications. Ceram. Int. 41, 397–402 (2015)

    Article  Google Scholar 

  8. Heidari, P., Masoudpanah, S.M.: Structural, magnetic and optical properties and photocatalytic activity of magnesium-calcium ferrite powders. J. Phys. Chem. Solids 148, 109681 (2021)

  9. Goldman, A.: Modem ferrite technology. Springer, Pittsburgh, PA, USA (2006)

    Google Scholar 

  10. Widatallah, H.M., Al-Mamari, F.A.S., Al-Saqri, N.A.M., et al.: Mossbauer and magnetic studies of Mg1þ2xSbxFe2-3xO4 spinel ferrites. Mater. Chem. Phys. 140, 97–103 (2013)

    Article  Google Scholar 

  11. Lin, Q., He, Y., Lin, J., Yang, F., Wang, L., Dong, J.: Structural and magnetic studies of Mg substituted cobalt composite oxide catalyst Co1 -xMgxFe2O4. J. Magn. Magn Mater. 469, 89–94 (2019)

    Article  ADS  Google Scholar 

  12. Kheradmand, A., Vahidi, O., Masoudpanah, S.M.: Magnetic, hyperthermic and structural properties of Zn substituted CaFe2O4 powders. Appl. Phys. A 124, 255 (2018)

    Article  ADS  Google Scholar 

  13. Sepelak, V., Baabe, D., Mienert, D., Litterst, F.J., Becker, K.D.: Enhanced magnetisation in nanocrystalline high-energy milled MgFe2O4. Scripta Mater. 48, 961–966 (2003)

    Article  Google Scholar 

  14. Wang, S., Li, D., Yang, C., Sun, G., Zhang, J., Xia, Y., Xie, C., Yang, G., Zhou, M., Liu, W.: A novel method for the synthesize of nanostructured MgFe2O4 photocatalysts. J. Sol. Gel Sci. Technol. 84, 169–179 (2017)

    Article  Google Scholar 

  15. Meng, W.: Preparation of magnetic material containing MgFe2O4 spinel ferrite from a Mg-Fe (III) layered double hydroxide intercalated by hexacyanoferrate (III) ions. Mater. Chem. Phys. 86, 1–4 (2004)

    Article  Google Scholar 

  16. Pradeep, A., Priyadharsini, P., Chandrasekaran, G.: Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Magn Mater. 320, 2774–2779 (2008)

    Article  ADS  Google Scholar 

  17. Somvanshi, S.B., Patade, S.R., Andhare, D.D., Jadhav, S.A., Khedkar, M.V., Kharat, P.B., Khirade, P.P., Jadhav, K.M.: Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation. J. Alloys Compd. 835, 155422, (2020)

  18. Ajeesha, T., Ashwini, A., George, M., Manikandan, A., Arul, M.J., Slimani, Y., Almessiere, M.A., Baykal, A.: Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. Phys. B Condens. Matter 606, 412660 (2021)

  19. Cardoso: Stealth magneto liposomes based on calcium-substituted magnesium ferrite nanoparticles for curcumin transport and release. Int. J. Mol. Sci. 21, 3641 (2020)

  20. Lagashetty, A., Pattar, A., Ganiger, S.K.: Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e01760

    Article  Google Scholar 

  21. Ateia, E.E., El-Bassuony, A.A.H., Abdellatif, G.: The impact of Ni substitution on the structural and magnetic properties of Mg nano-ferrite. SILICON 10, 1687–1696 (2018)

    Article  Google Scholar 

  22. Fantozzi, Rama, E., Calvio, E., Albini, C., Galinetto, B., Bini, P.: Silver doped magnesium ferrite nanoparticles: physico-chemical characterization and antibacterial activity. Materials 14, 2859 (2021)

  23. Okasha, N.: Influence of silver doping on the physical properties of Mg ferrites. J Mater Sci 43, 4192–4197 (2008)

    Article  ADS  Google Scholar 

  24. Smitha, T., Binu, P.: Jacob et al, Effect of samarium substitution on structural and magnetic properties of magnesium ferrite nanoparticles. J. of Mag. and Magn. Mat. 348, 140–145 (2013)

    Article  Google Scholar 

  25. Das, S.B, Kumar, V, Siddiqui, M.M.H., Kumar, N, Singh, R.K., Kumar, R.: Structural characterization and investigation of magneto-optic and multiferroic properties of nanostructured CoFe2O4 prepared by sol–gel derived facile chemical route. (2021). https://doi.org/10.1016/j.matpr.2021.07.234

  26. Chand, P., Vaish, S.: Kumar P, Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites. Physica B 524, 53–63 (2017)

    Article  ADS  Google Scholar 

  27. Verwey, E.J.W., Heilmann, E.L.: Physical properties and cation arrangement of oxides with spinel structures I. Cation Arrangement in Spinel. J. Chem. Phys. 15, 174 (1947)

  28. Kumar, V., Kumar, N., Das, S.B., Singh, R.K., Sarkar, K., Kumar, M.: Sol-gel assisted synthesis and tuning of structural, photoluminescence, magnetic and multiferroic properties by annealing temperature in nanostructured zinc ferrit. (2021). https://doi.org/10.1016/j.matpr.2021.05.215

  29. Kumar, N., Singh, R.K., Satyapal, H.K.: Structural, optical, and magnetic properties of non-stoichiometric lithium substituted magnesium ferrite nanoparticles for multifunctional applications. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03454-z

    Article  Google Scholar 

  30. Hirthna, Sendhilnathan S.: Enhancement in dielectric and magnetic properties of Mg2+ substituted highly porous super paramagnetic nickel ferrite nanoparticles with Williamson-Hall plots mechanistic view. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.08.090

  31. Somnath, Batoo, K.M., Raslan, E.H., et al.: Investigation of electrical, magnetic, and optical properties of silver-substituted magnesium–manganese ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 31, 7880–7888 (2020)

  32. Nigam, A., Pawar, S.J.: Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.10.243

  33. Kumar M.K.S, Kumar E. R, Ch. Srinivas, N. Suriyanarayanan, M. Deepty, C.L. Prajapat, T.V. Chandrasekhar Rao, D.L. Sastry Study of structural, morphological and magnetic properties Ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity, J. Mag. Magn. Mat. (2019), https://doi.org/10.1016/j.jmmm.2018.09.039

  34. Das S.B, Singh R.K, Kumar V, Kumar N, Singh P, Naik N.K, Structural, magnetic, optical and ferroelectric properties of Y3+ substituted cobalt ferrite nanomaterials prepared by a cost-effective sol-gel route. Mater Sci Semicond Process. 145, 106632 (2022)

  35. Das, S.B, Singh, R.K., Kumar, V., Kumar, N.: Tailoring the structural, optical and multiferroic properties of low temperature synthesized cobalt ferrite nanomaterials, by citrate precursor method. (2021) https://doi.org/10.1016/j.matpr.2021.04.001

  36. Agrawal, S., Parveen, A., Azam, A.: Structural, electrical, and opto-magnetic tweaking of Zn doped CoFe2xZnxO nanoparticles. J. of Mag. and Mag. Mat. 414, 144–152 (2016)

    Article  ADS  Google Scholar 

  37. Cui, Z., Wang, M., Lyu, N., Zhang, S., Ding, Y., Bai, K.: Electronic, magnetism and optical properties of transition metals adsorbed puckered arsenene. Superlattice. Microst. 152, 106852 (2021)

  38. Cui, Z., Luo, Y., Yu, J., Xu, Y.: Tuning the electronic properties of MoSi2N4 by molecular doping: a first principles investigation. Physica E: Low-dimensional Systems and Nanostructures 134, 114873 (2021)

  39. Muhammad, S., Ali, K., Javed, Y., Sattar, A., Akbar, L.: Detailed analysis of structural and optical properties of spinel cobalt doped magnesium zinc ferrites under different substitutions. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-04690-z

    Article  Google Scholar 

  40. Ebtesam, E.A., Amira, T., Mohamed, K.: Elsayed, Impact of Gd3+/graphene substitution on the physical properties of magnesium ferrite nanocomposites. J. Magn. Magn. Mater. 452, 169–178 (2018)

  41. Kagdi, A.R.: Influence of Mg substitution on structural, magnetic and dielectric properties of X-type barium-zinc hexaferrites Ba2Zn2- xMgxFe28O46. J. Alloys Compd. 741, 377–391 (2018)

    Article  Google Scholar 

  42. Mahale, V.: Influence of non-magnetic Zn-doping on the structural and the magnetic properties of magnesium ferrite. J. Phys. Conf. Ser. 1644, 012015 (2020)

Download references

Acknowledgements

The authors sincerely acknowledge the Dept. of Education, Govt. of Bihar, for opening the Center for Nanoscience and Nanotechnology at Aryabhatta Knowledge University in Patna, where this research was carried out successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, U., Singh, R.K., Das, S.B. et al. Studies on the Structural Properties and Band Gap Engineering of Ag+-Modified MgFe2O4 Nanomaterials Prepared by Low-Cost Sol–Gel Method for Multifunctional Application. J Supercond Nov Magn 35, 1937–1960 (2022). https://doi.org/10.1007/s10948-022-06220-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06220-w

Keywords

Navigation