Skip to main content
Log in

Crystal Structure and Magnetic Properties in B-Site-Disordered La1.75Ca0.25MnMO6 (with M = Ti and Fe) Double Perovskites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Double perovskite La1.75Ca0.25MnMO6 (with M = Ti and Fe) systems were elaborated employing a solid-state reaction method. The refinement of X-ray diffraction patterns shows that La1.75Ca0.25MnFeO6 (LCMFO) and La1.75Ca0.25MnTiO6 (LCMTO) compounds crystallize in an orthorhombic structure with the Pbnm space group. The electron density plots indicated the covalent nature between Mn/Ti/Fe and oxygen ions. The results of the temperature dependence of the magnetization show that these samples present a paramagnetic-antiferromagnetic transition at 230 K and 223 K for LCMFO and LCMTO, respectively. The non-null magnetization and magnetic hysteresis loop at room temperature can indicate the formation of weak ferromagnetism in the paramagnetic (PM) region in both compounds. Moreover, our magnetic results show a complex magnetic response in these materials below TN, which can be attributed to the formation of various types of magnetic exchange interactions within the system such as antiferromagnetic (AFM), (ferromagnetic) FM, and ferrimagnetic (FiM) couplings. Consequently, exchange coupling between the FM and/or FiM moments and AFM antiphase boundaries is responsible for the observation of exchange bias in the materials. Considering practical applications of perovskites, the present observation of the exchange bias effect and room temperature ferromagnetism in these materials may have great technological importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Islam, S.A.U., Andrabi, F.A., Mohmed, F., Sultan, K., Ikram, M., Asokan, K.: Ba doping induced modifications in the structural, morphological and dielectric properties of double perovskite La2NiMnO6 ceramics. J. Solid Stat. Chem. 290, 121597 (2020). https://doi.org/10.1016/j.jssc.2020.121597

    Article  Google Scholar 

  2. Howard, C.J., Stokes, H.T.: Group-theoretical analysis of octahedral tilting in perovskites. J. Acta Crystallogr. Sect. B: Struct. Sci. 54(6), 782–789 (1998). https://doi.org/10.1107/S0108768198004200

  3. Bouderbala, A., Makni-Chakroun, J., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A., Nowak, S., Ammar-Merah, S.: Structural, magnetic and magnetocaloric study of La0.7-xEuxSr0.3MnO3 (x = 0.1, 0.2 and 0.3) manganites. J. Ceram. Int. 41, 7337–7344 (2015). https://doi.org/10.1016/j.ceramint.2015.02.034

  4. Howard, C.J., Kennedy, B.J., Woodward, P.M.: Ordered double perovskites-a group-theoretical analysis. J. Acta Crystallogr. Sect. B: Struct. Sci. 59(4), 463–471 (2003). https://doi.org/10.1107/S0108768103010073

  5. Iwakura, H., Einaga, H., Teraoka, Y.: Relationship between cation arrangement and photocatalytic activity for Sr-Al-Nb-O double perovskite. J. Inorg. Chem. 49, 11362–11369 (2010). https://doi.org/10.1021/ic101208q

    Article  Google Scholar 

  6. Lin, Y.Q., Wu, S.Y., Chen, X.M.: Effects of ordering domain structure on dielectric properties of double perovskite La2NiMnO6. J Adv Dielectr. 01, 319–324 (2011). https://doi.org/10.1142/S2010135X1100046X

    Article  Google Scholar 

  7. Truong, K.D., Singh, M.P., Jandl, S., Fournier, P.: Influence of Ni/Mn cation order on the spin-phonon coupling in multifunctional La2NiMnO6 epitaxial films by polarized Raman spectroscopy. J. Phys. Rev. B. 80, 134424 (2009). https://doi.org/10.1103/PhysRevB.80.134424

    Article  ADS  Google Scholar 

  8. Baidya. S, Saha-Dasgupta. T.: J. Phys. Rev. B 84, 035131 (2011). https://doi.org/10.1103/PhysRevB.84.035131

  9. Egoavil, R., Hühn, S., Jungbauer, M., Gauquelin, N., Béché, A., Van Tendeloo, G., Verbeecka, J., Moshnyaga, V.: Phase problem in the B-site ordering of La2CoMnO6: impact on structure and magnetism. J. Nanoscale. 7, 9835–9843 (2009). https://doi.org/10.1039/C5NR01642H

    Article  ADS  Google Scholar 

  10. Wang, S., Yu, J.: J. Supercond. Nov. Magn. 31(9), 2789–2795 (2018). https://doi.org/10.1007/s10948-017-4532-4

    Article  Google Scholar 

  11. Mao, Y., Parsons, J., McCloy, J.S.: Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles. J. Nanoscale. 5, 4720 (2013). https://doi.org/10.1039/C3NR00825H

    Article  ADS  Google Scholar 

  12. Chang, H., Gao, Y., Liu, F., Liu, Y., Zhu, H., Yun, Y.: Effect of synthesis on structure, oxygen voids, valence bands, forbidden band gap and magnetic domain configuration of La2CoMnO6. J. Alloys Compd. 690, 8–14 (2017). https://doi.org/10.1016/j.jallcom.2016.08.086

    Article  Google Scholar 

  13. Meher, K.P., Savinov, M., Kamba, S., Goian, V., Varma, K.B.R.: Structure, dielectric, and magnetic properties of Sr2TiMnO6 ceramics. J. Appl. Phys. 108, 094108 (2010). https://doi.org/10.1063/1.3500369

    Article  ADS  Google Scholar 

  14. Burgos, R.O., Martinez, D., Vargas, C.P., Tellez, D.L., Lopez, E.V., Santos, A.S., Roa-Rojas, J.: Magnetic and ferroelectric response of Ca2TiMnO6 manganite-like perovskite. J. Rev. Mex. Fis. S. 58(2), (2012). http://www.redalyc.org/articulo.oa?id=57030392012

  15. Biskup, N., García-Hernández, M., Álvarez-Serrano, I., López, M.L., Veiga, M.L.: Room temperature electroresistance in Sr2- xGdxMnTiO6 perovskites (0≤ x≤ 1). J. Alloys Compd. 509(15), 4917–4923 (2011). https://doi.org/10.1016/j.jallcom.2011.01.130

    Article  Google Scholar 

  16. Pei, Z., Leng, K., Xia, W., Lu, Y., Wu, H., Zhu, X.: Structural characterization, dielectric, magnetic and optical properties of double perovskite Bi2FeMnO6 ceramics. J. Magn. Magn. Mater. 508, 166891 (2020). https://doi.org/10.1016/j.jmmm.2020.166891

    Article  Google Scholar 

  17. Shaheen, R., Bashir, J., Rundlöf, H., Rennie, A.R.: The crystal structure of CaLaMnFeO6 double perovskite. J. Mater Lett. 59, 2296–2299 (2005). https://doi.org/10.1016/j.matlet.2005.03.007

    Article  Google Scholar 

  18. Palakkal, J.P., Sankar, C.R., Paulose, A.P., Varma, M.R.: Hopping conduction and spin glass behavior of La2FeMnO6. J. Alloy. Compd. 743, 403–409 (2018). https://doi.org/10.1016/j.jallcom.2018.01.210

    Article  Google Scholar 

  19. Dhilip, M., Devi, N.A., Punitha, J.S., Anbarasu, V., Kumar, K.S.: Conventional synthesis and characterization of cubically ordered La2FeMnO6 double perovskite compound. J. Vacuum. 167, 16–20 (2019). https://doi.org/10.1016/j.vacuum.2019.05.028

    Article  ADS  Google Scholar 

  20. Nasir, M., Khan, M., Agbo, S.A., Bhatt, S., Kumar, S., Sen, S.: Evidence of cluster-glass and Griffiths-like phases in partially ordered La2FeMnO6 double perovskite. J. Phys. D: Appl. Phys. 53(37), 375003 (2020). https://doi.org/10.1088/1361-6463/ab9263

    Article  Google Scholar 

  21. Shirazi, P., Rahbar, M., Behpour, M., Ashrafi, M.: La2MnTiO6 double perovskite nanostructures as highly efficient visible light photocatalysts. New J. Chem. 44, 231–238 (2020). https://doi.org/10.1039/C9NJ04932K

    Article  Google Scholar 

  22. Arciniegas Jaimes, D.M., De Paoli, J.M., Nassif, V., Bercoff, P.G., Tirao, G., Carbonio, R.E., Pomiro, F.: The effect of B-site order-disorder in the structure and magnetism of the new perovskite family La2MnB′O6 with B′ = Ti. Zr and Hf. J. Inorg. Chem. 60(7), 4935–4944 (2021). https://doi.org/10.1021/acs.inorgchem.1c00014

    Article  Google Scholar 

  23. Brahiti, N., Abbasi Eskandari, M., Balli, M., Gauvin-Ndiaye, C., Nourafkan, R., Tremblay, A.M., Fournier, P.: Analysis of the magnetic and magnetocaloric properties of ALaFeMnO6 (A= Sr, Ba, and Ca) double perovskites. J. Appl. Phys. 127(11), 113905 (2020). https://doi.org/10.1063/1.5144153

    Article  ADS  Google Scholar 

  24. Roisnel, T., Rodriguez-Carvajal, J.: Computer Program FULLPROF. LLB-LCSIM. (2003).

  25. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44(6), 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  26. Brandenburg, K.: Diamond Version 2.0 Impact Gbr, Bonn, Germany. (1998).

  27. Goodenough, J.B., Raccah, P.M.: J. Appl. Phys. 36, 1031 (1965). https://doi.org/10.1063/1.1714087

    Article  ADS  Google Scholar 

  28. Serrate, D., De Teresa, J.M., Ibarra, M.R.: J. Phys. Condens. Mater. 19, 023201 (2007). https://doi.org/10.1088/0953-8984/19/2/023201

    Article  ADS  Google Scholar 

  29. Sherrer, P.: Estimation of size and internal structural of colloidal particles by mean of Rontgen rays. Gottinger Nachrichten Math. Phys. 2, 98–100 (1918).

  30. Williamson, G.K., Hall, W.H.: Acta Metall. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  31. Patange, S.M., Shirsath, S.E., Jangam, G.S., Lohar, K.S., Jadhav, S.S., Jadhav, K.M.: Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles. J. Appl. Phys. 109, 053909 (2011). https://doi.org/10.1063/1.3559266

    Article  ADS  Google Scholar 

  32. El Khayati, N., Rodrı́guez-Carvajal, J., Bourée, F., Roisnel, T., Cherkaoui, R., Boutfessi, A., Boukhari, A.: Magnetic structure and exchange interactions in CuFe2(P2O7)2. J. Solid State Sci. 4(10), 1273–1283 (2002). https://doi.org/10.1016/S1293-2558(02)00015-8

  33. Xia, W., Wu, H., Xue, P., Zhu, X.: Microstructural, magnetic, and optical properties of Pr-doped perovskite manganite La0.67Ca0.33MnO3 nanoparticles synthesized via sol-gel process. J. Nanoscale Res. Lett. 13(1), 1–13 (2018). https://doi.org/10.1186/s11671-018-2553-y

  34. Zheng, W., Pang, W., Meng, G.: Hydrothermal synthesis and characterization of perovskite-type Ba2SbMO6 (M = In, Y, Nd) oxides. J. Mater Lett. 37(4–5), 276–280 (1998). https://doi.org/10.1016/S0167-577X(98)00105-0

    Article  Google Scholar 

  35. Benali, A., Bejar, M., Dhahri, E., Graça, M.P.F., Valente, M.A., Radwan, A.: High ethanol gas sensing property and modulation of magnetic and AC-conduction mechanism in 5% Mg-doped La0.8Ca0.1Pb0.1FeO3 compound. J. Mater Sci: Mater Electron. 30(13), 12389–12398 (2019). https://doi.org/10.1007/s10854-019-01597-2

  36. Abhirami, S., Basha, S.S.: Phase stabilization and effect of trivalent lanthanide substitution on Dy2FeMnO6 double perovskite compounds. J. Vacuum. 177, 109412 (2020). https://doi.org/10.1016/j.vacuum.2020.109412

  37. Iliev, M.N., Abrashev, M.V., Litvinchuk, A.P., Hadjiev, V.G., Guo, H., Gupta, A.: Raman spectroscopy of ordered double perovskite La2CoMnO6 thin films. J. Phys. Rev. B. 75, 104118 (2007). https://doi.org/10.1103/PhysRevB.75.104118

  38. Gupta, S., Medwal, R., Pavunny, S.P., Sanchez, D., Katiyar, R.S.: Temperature dependent Raman scattering and electronic transitions in rare earth SmFeO3. J. Ceram. Int. 44(4), 4198–4203 (2018). https://doi.org/10.1016/j.ceramint.2017.11.223

    Article  Google Scholar 

  39. Guo, H., Burgess, J., Street, S., Gupta, A., Calvarese, T.G., Subramanian, M.A.: Growth of epitaxial thin films of the ordered double perovskite La2CoMnO6 on different substrates. J. Appl. Phys. Lett. 89(2), 022509 (2006). https://doi.org/10.1063/1.2221894

    Article  ADS  Google Scholar 

  40. Xin, Y., Shi, L., Zhao, J., Yuan, X., Zhou, S., Hou, L., Tong, R.: Anomalous magnetism in Al doped La2CoMnO6 ceramics. J. Magn. Magn. Mater. 510, 166950 (2020). https://doi.org/10.1016/j.jmmm.2020.166950

    Article  Google Scholar 

  41. Sahoo, R.C., Das, S., Nath, T.K.: Influence of magnetic frustration and structural disorder on magnetocaloric effect and magneto-transport properties in La1.5Ca0.5CoMnO6 double perovskite. J. Appl. Phys. 123(1), 013902 (2018). https://doi.org/10.1063/1.5004600

  42. Khelifi, J., Tozri, A., Issaoui, F., Dhahri, E., Hlil, E.K.: The influence of disorder on the appearance of Griffiths phase and magnetoresistive properties in (La1-xNdx)2/3(Ca1-ySry)1/3MnO3 oxides. J. Ceram. Int. 40, 1641–1649 (2014). https://doi.org/10.1016/j.ceramint.2013.07.055

    Article  Google Scholar 

  43. Oumezzine, M., Kallel, S., Pena, O., Kallel, N., Guizouarn, T., Gouttefangeas, F., Oumezzine, M.: Correlation between structural, magnetic and electrical transport properties of barium vacancies in the La0.67Ba0.33-x□xMnO3 (x = 0, 0.05, and 0.1) manganite. J. Alloys Compd. 582, 640–646 (2014). https://doi.org/10.1016/j.jallcom.2013.08.011

  44. Usama, H.M., Sharif, A., Zubair, M.A., Gafur, M.A., Hoque, S.M.: Structural transition and its effect in La, Zr co-substituted mono-domain BiFeO3. J. Appl. Phys. 120(21), 214106 (2016). https://doi.org/10.1063/1.4969047

    Article  ADS  Google Scholar 

  45. Karmakar, S., Taran, S., Bose, E., Chaudhuri, B.K., Sun, C.P., Huang, C.L., Yang, H.D.: Evidence of intrinsic exchange bias and its origin in spin-glass-like disordered L0.5Sr0.5MnO3 manganites (L = Y, Y0.5Sm0.5, and Y0.5La0.5). J. Phys. Rev. B. 77(14), 144409 (2008). https://doi.org/10.1103/PhysRevB.77.144409

  46. Fita, I., Markovich, V., Wisniewski, A., Puzniak, R., Mahendiran, R., Gorodetsky, G.: Pressure effect on Bi0.4Ca0.6Mn1-xRuxO3 manganite: enhanced ferromagnetism and collapsed exchange bias. J. Appl. Phys. 112(9), 093908 (2012). https://doi.org/10.1063/1.4762005

  47. Markovich, V., Fita, I., Wisniewski, A., Puzniak, R., Mogilyansky, D., Naumov, S.V., Mostovshchikova, E.V., Telegin, S.V., Gorodetsky, G., Jung, G.: Doping dependent magnetism and exchange bias in CaMn1-xWxO3 manganites. J. Appl. Phys. 116(9), 093903 (2014). https://doi.org/10.1063/1.4894280

    Article  ADS  Google Scholar 

  48. Usama, H.M., Akter, A., Zubair, M.A.: Modulation of structural, electrical, and magnetic features with dilute Zr substitution in Bi0.8La0.2Fe1-xZrxO3 system. J. Appl. Phys. 122(24), 244102 (2017). https://doi.org/10.1063/1.5006264

Download references

Acknowledgements

This paper within the framework of collaboration is supported by the Tunisian Ministry of Higher Education and Scientific Research and the Portuguese Ministry of Science, Technology and Higher Education. The authors acknowledge the i3N (UID/CTM/50025/2020) and CICECO-Aveiro Institute of Materials (UID/CTM/50011/2020), financed by FCT/MEC and FEDER under the PT2020 Partnership Agreement. This work is also funded by national funds (OE), through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Selmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmi, R., Cherif, W., Sarabando, A.R. et al. Crystal Structure and Magnetic Properties in B-Site-Disordered La1.75Ca0.25MnMO6 (with M = Ti and Fe) Double Perovskites. J Supercond Nov Magn 35, 1195–1206 (2022). https://doi.org/10.1007/s10948-022-06174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06174-z

Keywords

Navigation