Skip to main content
Log in

Structural, magnetic and magnetocaloric properties of La1.95Ca0.05BMnO6 (B = Ni and Co) double perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have synthesized La1.95Ca0.05BMnO6 (B = Ni and Co) double perovskite using sol–gel method. The structural properties were investigated by X-ray diffraction. Ritveld analysis show that ours samples crystallize in the monoclinic system with P21/n space group. Refinement of X-ray results reveal that the cell parameters, the unit cell volume and the crystallite size increase with the ionic radius of B-site. In addition, a paramagnetic to ferromagnetic (PM–FM) phase transition is observed at 275 and 201 K for La1.95Ca0.05NiMnO6 and La1.95Ca0.05CoMnO6, respectively. The magnetization measurements, Arrott analysis and Landau theory suggest ferromagnetic phase transition with second order for all the synthesized samples. The magnetic entropy change was evaluated from the measurement of isothermal magnetization. The maximum values of magnetic entropy change are found to be \({-\varDelta S}_{M}^{max}\)= 1.18 and 0.91 J/Kg K for La1.95Ca0.05NiMnO6 and La1.95Ca0.05CoMnO6, respectively, under µ0H = 5 T. We have also described the universal master curve for ΔSM, which is the evolution of (ΔSM/\({\varDelta S}_{M}^{max}\)) versus rescaled temperature θ = (T − TC)/(Tr − TC), where Tr is the reference temperature. Interestingly, all the ΔSM (T, H) data points are collapsed into a universal curve in the whole temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.V. Manh, T.A. Ho, T.D. Thanh, T.L. Phan, M.H. Phan, S.-C. Yu, Trans. Magn. 51, 2400304 (2015)

    Google Scholar 

  2. I. Hussain, M.S. Anwar, S.N. Khan, J.W. Kim, K.C. Chung, B.H. Koo, Ceram. Int. 43, 10080 (2017)

    Article  Google Scholar 

  3. I. Hussain, M.S. Anwar, S.N. Khan, J.W. Kim, K.C. Chung, B.H. Koo, J. Alloys Comp. 694, 815 (2017)

    Article  Google Scholar 

  4. T. Chakraborty, H. Nhalil, R. Yadav, A.A. Wagh, S. Elizabeth, J. Magn. Magn. Mater. 428, 59 (2017)

    Article  Google Scholar 

  5. P.M. Tirmali, S.M. Mane, S.L. Kadam, S.B. Kulkarni, Chin. J. Phys. 56, 525 (2018)

    Article  Google Scholar 

  6. D.N. Singh, T.P. Sinha, D.K. Mahato, Mater. Today. 4, 5640 (2017)

    Article  Google Scholar 

  7. H. Lin, X.X. Shi, X.M. Chen, J. Alloys Comp 709, 772 (2017)

    Article  Google Scholar 

  8. S.H. Oh, H.Y. Choi, J.Y. Moon, M.K. Kim, Y. Jo, N. Lee, Y.J. Choi, J. Phys. D 48, 445001 (2015)

    Article  Google Scholar 

  9. Q. Li, L. Xing, M. Xu, J. Alloys Comp 710, 771 (2017)

    Article  Google Scholar 

  10. M.P. Singh, K.D. Truong, S. Jandl, P. Fournier, J. Appl. Phys. 107, 09D917 (2010)

    Article  Google Scholar 

  11. J.B. Goodenough, Phys. Rev. 100, 564 (1955)

    Article  Google Scholar 

  12. R.I. Dass, J.Q. Yan, J.B. Goodenough, Phys. Rev. B 68, 064415 (2003)

    Article  Google Scholar 

  13. P. Kumar, S. Ghara, B. Rajeswaran, D.V.S. Muthu, A. Sundaresan, A.K. Sood, Solid State Commun. 184, 47 (2014)

    Article  Google Scholar 

  14. H.R. Fuh, Y.P. Liu, Z.R. Xiao, Y.K. Wang, J. Magn. Magn. Mater. 357, 7 (2014)

    Article  Google Scholar 

  15. H. Chang, Y. Gao, F. Liu, Y. Liu, H. Zhu, Y. Yun, J. Alloys Compd. 690, 8 (2017)

    Article  Google Scholar 

  16. J.K. Murthy, K.D. Chandrasekhar, S. Murugavel, A. Venimadhav, J. Mater. Chem. C. 3, 836 (2015)

    Article  Google Scholar 

  17. M. Penchal Reddy, R.A. Shakoor, A.M.A. Mohamed, Mater. Chem. Phys. 177, 346 (2016)

    Article  Google Scholar 

  18. Y. Mao, RSC Adv. 2, 12675 (2012)

    Article  Google Scholar 

  19. J.P. Palakkal, P.N. Lekshmi, S. Thomas, K.G. Sureshc, M.R. Varma, RSC Adv. 5, 105531 (2015)

    Article  Google Scholar 

  20. P. Barrozo, N.O. Moreno, J.A. Aguiar, Adv. Mater. Res. 975, 122 (2014)

    Article  Google Scholar 

  21. X. Yuan, Q. Li, J. Hu, M. Xu, Physica B. 424, 73 (2013)

    Article  Google Scholar 

  22. R.X. Silva, A.S. de Menezes, R.M. Almeida, R.L. Moreira, R. Paniago, X. Marti, H. Reichlova, M. Marysko, M.V.S. Rezende, C.W.A. Paschoal, J. Alloys Compd. 661, 541 (2016)

    Article  Google Scholar 

  23. Y. Mao, J. Parsons, J.S. McCloy, Nanoscale 5, 4720 (2013)

    Article  Google Scholar 

  24. Y. Guo, L. Shi, S. Zhou, J. Zhao, S. Wei, J. Supercond. Nov. Magn. 6, 3287 (2013)

    Article  Google Scholar 

  25. Q. Li, N. Li, J.Z. Hu, Q. Han, Q.S. Ma, L. Ge, B. Xiao, M.X. Xu, J. Appl. Phys. 116, 033905 (2014)

    Article  Google Scholar 

  26. Y. Bai, Y. Xia, H. Li, L. Han, Z. Wang, X. Wu, J. Phys. Chem. C 116, 16841 (2012)

    Article  Google Scholar 

  27. D.A.B. Barbosa, M.W. Lufaso, H. Reichlova, X. Marti, M.V.S. Rezende, A.P. Maciel, C.W.A. Paschoal, J. Alloys Compd. 663, 899 (2016)

    Article  Google Scholar 

  28. J.K. Murthy, K.D. Chandrasekhar, H.C. Wu, H.D. Yang, J.Y. Lin, A. Venimadhav, J. Phys. 28, 086003 (2016)

    Google Scholar 

  29. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)

    Article  Google Scholar 

  30. T. Roisnel, J. Rodriguez-Carvajal, Computer Program FULLPROF (LLB-LCSIM, Rennes, 2003)

    Google Scholar 

  31. V.M. Goldschmidt, Geochemische Verterlungsgesetze Der Elemente (Norske Videnskap, Oslo, 1927), p. 738

    Google Scholar 

  32. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  33. D. Serrate, J.M. De Teresa, M.R. Ibarra, J. Phys. Condens. Matter 19, 023201 (2007)

    Article  Google Scholar 

  34. Taylor, Wiley, New York. 1961

  35. G.K. Williamson, W.H. Hall, Acta Met 1, 22 (1953)

    Article  Google Scholar 

  36. B.K. Banerjee, Phys. Lett. 12, 16 (1964)

    Article  Google Scholar 

  37. R.D. McMichael, J.J. Ritter, R.D. Shull, J. Appl. Phys. 73, 6946 (1993)

    Article  Google Scholar 

  38. M. Balli, P. Fournier, S. Jandl, K.D. Truong, M.M. Gospodinov, J. Appl. Phys. 116, 073907 (2014)

    Article  Google Scholar 

  39. S. Hua, P. Zhang, H. Yang, S. Zhang, H. Ge, J. Magn. 18, 34 (2013)

    Article  Google Scholar 

  40. P.T. Phong, N.V. Dang, P.H. Nam, L.T.H. Phong, D.H. Manh, N.M. An, I.-J. Lee, J. Alloys Compd. 683, 67 (2016)

    Article  Google Scholar 

  41. D. Turki, R. Cherif, E.K. Hlil, M. Ellouze, F. Elhalouani, Int. J. Mod. Phys. B 28, 1450230 (2014)

    Article  Google Scholar 

  42. N.H. Duc, T.D. Hien, P.E. Brommer, J.J.M. Franse, J. Magn. Magn. Mater. 104, 1252 (1992)

    Article  Google Scholar 

  43. J.S. Amaral, M.S. Reis, V.S. Amaral, T.M. Mendonca, J.P. Araujo, M.A. Sa, P.B. Tavares, J.M. Vieira, J. Magn. Magn. Mater. 290, 686 (2005)

    Article  Google Scholar 

  44. S.V. Amaral, S.J. Amaral, J. Magn. Magn. Mater. 2104, 272 (2004)

    Google Scholar 

  45. R. Venkatesh, M. Pattabiraman, K. Sethupathi, G. Rangarajan, S. Angappane, J.G. Park, J. Appl. Phys. 103, 07B319 (2008)

    Article  Google Scholar 

  46. V. Franco, A. Conde, Int. J. Refrigeration 33, 465 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ouled Nasser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouled Nasser, N., Ezaami, A., Koubaa, M. et al. Structural, magnetic and magnetocaloric properties of La1.95Ca0.05BMnO6 (B = Ni and Co) double perovskite. J Mater Sci: Mater Electron 29, 13931–13940 (2018). https://doi.org/10.1007/s10854-018-9526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9526-x

Navigation