Skip to main content
Log in

Predictive Study of the Rare Earth Double Perovskite Oxide Ba2ErReO6 and the Influence of the Hubbard Parameter U on its Half-Metallicity

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, we have studied and carried out a theoretical calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on density functional theory (DFT) and implemented in the wien2k program to investigate the structural, electronic, and magnetic properties of Ba2ErReO6 material, within the generalized gradient approximation (GGA) and generalized gradient approximation with effective Hubbard U parameter (GGA + U). According to the electronic properties and according to the GGA approximation, the results show that our material Ba2ErReO6 has a metallic character with integral magnetic moment of 5.1 µB; however, through employing the GGA + U method, the material Ba2ErReO6 radically changes in nature due to the fact that it presents a half-metallic character with a direct band gap at Γ-Γ direction in spin down channel and this for values of U ≥ 2 eV; in addition, we see that the greater the Hubbard coefficient U, the greater the energy gap of the material in its semi-conducting nature (in the spin down channel) until reaching the value of 1.96 eV corresponding to a value of 8 eV for the Hubbard coefficient U. This is a predictive study of the double perovskite compound Ba2ErReO6 based on rare earths Er and therefore constitutes a serious reason for further theoretical investigations as well as adequate experiments and this for very useful and widespread applications such as spintronic, high-performance electronic devices, and optic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haid, S., Bouadjemi, B., Houari, M., Matougui, M., Lantri, T., Bentata, S.,  Aziz, Z.: Solid State Commu. 322, 114052 (2020)

  2. Morrow, R., Soliz, J.R., Hauser, A.J., Gallagher, J.C., Susner, M.A., Sumption, M.D., Aczel, A.A., Yan, J., Yang, F., Woodward, P.M.: J. Solid State Chem. 238, 46 (2016)

  3. Musa, M.: saad H-E. J. Phys. and Chem. of Solids 94, 11 (2016)

  4. Vasala, S., Karppinen, M.: Prog. Solid State Chem. 43, 1 (2015)

    Article  Google Scholar 

  5. Dudnikov, V., Orlov, Y.S., Gavrilkin, S.Y., Gorev, M., Vereshchagin, S., Solovyov, L., Perov, N., Ovchinnikov, S.: The Journal of Physical Chemistry C 120(25), 13443 (2016)

    Article  Google Scholar 

  6. Ebrahimi, R., Mokhtari, A., Soleimanian, V.: J. Supercond. Novel Magn. 29, 1339 (2016)

    Article  Google Scholar 

  7. Ghebouli, B., Ghebouli, M.A., Choutri, H., Fatmi, M., Chihi, T., Louail, L., Bouhemadou, A., Bin Omran, S., Khenata, R., Khachai, H.: Materials Sc. in Semicon. Process. 42, 405 (2016)

  8. Souidi, A., Bentata, S., Benstaali, W., Bouadjemi, B., Abbad, A., Lantri, T.: Mater. Sci. Semicond. Process. 43, 196 (2016)

    Article  Google Scholar 

  9. Ullah, M., Khan, S.A., Murtaza, G., Khenata, R., Ullah, N., Omran, S.B.: J. Magn. Magn. Mater. 377, 197 (2015)

    Article  ADS  Google Scholar 

  10. Itoh, H., Inoue, J.: J. Magn. Magn. Mater. 226, 930 (2001)

    Article  ADS  Google Scholar 

  11. Zutic, I., Fabian, J., Das Sarma, S.: Rev. Modern Phys. 76, 323 (2004)

  12. GRAY, T.J.: J. Power Sources, 6, 121 (1981)

  13. Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K., Tokura, Y.: Nature 395, 677 (1998)

    Article  ADS  Google Scholar 

  14. Dudnikov, V., Orlov, Y.S., Kazak, N., Fedorov, A., Solov’Yov, L., Vereshchagin, S., Burkov, A., Novikov, S., Ovchinnikov, S.: Ceramics Int. 45, 5553 (2019)

  15. Lamrani, A.F., Ouchri, M., Benyoussef, A., Belaiche, M., Loulidi, M.: J. Magn. Magn. Mater. 345, 195 (2013)

    Article  ADS  Google Scholar 

  16. Pinacca, R.M., Larrégola, S.A., López, C.A., Pedregosa, J.C., Pomjakushin, V., Sánchez,  R.D., Alonso, J.A.: Materials Res. Bullet. 66, 192 (2015)

  17. Berri, S.: J. Magn. Magn. Mater. 385, 124 (2015)

    Article  ADS  Google Scholar 

  18. Dimitrovska, S., Aleksovska, S., Kuzmanovski, I.: Cent. Eur. J. Chem. 3, 198 (2005)

    Google Scholar 

  19. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz Techn. Universität Wien Austria 3 9501031 1 2 (2001)

  20. Perdew, J.P., Burke, K., Ernzerh, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  21. Sun, M., Chou, J.-P., Shi, L., Gao, J., Hu, A., Tang, W., Zhang, G.: ACS Omega 3(6), 5971 (2018)

    Article  Google Scholar 

  22. Wang, S., Yu, J.: J. Supercond. Novel Magn. 31(9), 2789–2795 (2018)

    Article  Google Scholar 

  23. Loschen, C., Carrasco, J., Neyman, K.M., Illas, F.: Phys. Rev. B 75, 035115 (2007)

  24. Lantri, T., Bentata, S., Bouadjemi, B., Benstaali, W., Bouhafs, B., Abbad, A., Zitouni, A.: J. Magn. Magn. Mater. 419, 74 (2016)

    Article  ADS  Google Scholar 

  25. Anisimov, V.I., Zaanen, J., Andersen, O.K.: Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  26. Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: J. Phys.: Condens. Matter 9, 767 (1997)

    ADS  Google Scholar 

  27. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P.: Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

  28. Haid, S., Benstaali, W., Abbad, A., Bouadjemi, B., Bentata, S., Aziz, Z.: Materials Science & EngineeringB 245, 68 (2019)

    Google Scholar 

  29. Schwarz, K.: J. Phys. F Met. Phys. 16, L211 (1986)

    Article  ADS  Google Scholar 

  30. Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)

  31. Madsen, G.K.H., Singh, D.J.: Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  32. Li, Y.D., Wang, C.C., Lu, Q.L., Huang, S.G., Wang, H., Liu, C.S.: Solid State Commun. 189, 38 (2014)

    Article  ADS  Google Scholar 

  33. Saad, H.-E.M., Althoyaib, S.: Mater. Chem. Phys. 190, 230 (2017)

    Article  Google Scholar 

  34. Orlov, Y.S., Solovyov, L., Dudnikov, V., Fedorov, A., Kuzubov, A., Kazak, N., Voronov, V., Vereshchagin, S., Shishkina, N., Perov, N.: Phys Rev B 88 (23), 235105 (2013)

  35. Houari, M., Bouadjemi, B., Abbad, A., Lantri, T., Haid, S., Benstaali, W., Matougui, M., Bentata, S.: JETP Lett. 112(6), 364 (2020)

    Article  ADS  Google Scholar 

  36. Benatmane, S., Cherid, S.: JETP letters, 1 (2020)

  37. Sun, M., Schwingenschlögl, U.: The J. Phys. Chem. C 125, 4133 (2021)

    Article  Google Scholar 

  38. Murnaghan, F.D.: Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  Google Scholar 

  39. Choy, J.H., Park, J.H., Hong, S.T., Kim, D.K.: J. Solid State Chem. 111, 370 (1994)

    Article  ADS  Google Scholar 

  40. Cheah, M.C.L., Kennedy, B.J.: Phys. B 385, 184 (2006)

    Article  ADS  Google Scholar 

  41. Meilin, L., Shuang, N., Zhuo, W., Tongcheng, C., Xiaoxiang, X.: Int. J. Hydrogen Energy 41, 1550 (2016)

    Article  Google Scholar 

  42. Rezaiguia, M., Benstaali, W., Abbad, A., Bentata, S., Bouhafs, B.: J. Supercond. Novel Magn. 30, 2581 (2017)

    Article  Google Scholar 

  43. Lin, H., Shi, X.X., Chen, X.M.: J. Alloy. Compd. 709, 772 (2017)

    Article  Google Scholar 

  44. Sun, M., Ren, Q., Zhao, Y., Wang, S., Yu, J. Tang, W.: J Appl Phys 119, 143904 (2016)

  45. Kanungo, S., Yan, B., Jansen, M., Felser, C.: Phys Rev B 89, 214414 (1965)

  46. Brey, L., Calderón, M.J., Das Sarma, S., Guinea, F.: Phys. Rev. B 74, 094429 (2006)

  47. Morrish, A.H.: J. Phys. Soc. Jpn. 8, 21 (1966)

    Google Scholar 

  48. Zhao, H.J., Liu, X.Q., Chen, X.M.: AIP Adv. 2, 9 (2012)

    Google Scholar 

  49. Mandal, T.K., Felser, C., Greenblatt, M., Kübler, J.: Phys Rev B 78, 134431 (2008)

  50. Serrate, D., De Teresa, J.M., Ibarra, M.R.: J Phys Condens Matter 19, 023201 (2007)

  51. Krockenberger, Y., Reehuis, M., Tovar, M., Mogare, K., Jansen, M., Alff, L.: J. Magn. Magn. Mater. 310, 1854 (2007)

    Article  ADS  Google Scholar 

  52. Krockenberger, Y., Mogare, K., Reehuis, M., Tovar, M., Jansen, M., Vaitheeswaran, G., Kanchana, V., Bultmark, F., Delin, A., Wilhelm, F., Rogalev, A., Winkler, A., Alff, L.: Phys Rev B 75, 020404 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Benatmane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haid, S., Matougui, M., Benatmane, S. et al. Predictive Study of the Rare Earth Double Perovskite Oxide Ba2ErReO6 and the Influence of the Hubbard Parameter U on its Half-Metallicity. J Supercond Nov Magn 34, 2893–2903 (2021). https://doi.org/10.1007/s10948-021-06011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06011-9

Keywords

Navigation