Skip to main content
Log in

First-Principles Predictions on Half-Metallic Results of RBaMn2O6-δ (R = Nd, Pr, La and δ = 0, 1) Double Perovskite Compounds

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The structural, electronic, and half-metallic properties of double perovskite RBaMn2O6-δ (X = Nd, Pr, La and δ = 0, 1) compounds are carried out by employing full-potential linearized augmented plane wave (FP-LAPW) method. Perdew-Burke-Ernzerhof-generalized gradient approximations (PBE-GGA) are used for the exchange-correlation potential. Features such as the lattice constant, bulk modulus, and its pressure derivative are reported. The optimized lattice parameters are found to be in good accord with experiment. Based on the calculated band structures, we found that the RBaMn2O6 (R = Nb, Pr, La) are half-metallic ferromagnets with a magnetic moment of 10, 9, and 7 μB/fu and half-metallic flip gaps of 1.31, 1.43, and 1.17 eV, respectively. Our compounds are identified as potential candidates for spintronic applications and magnetoelectronic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  2. R. F. Service: Science. 344, 458 (2014)

    Article  ADS  Google Scholar 

  3. Snaith, H.J.: J. Phys. Chem. Lett. 4, 3623 (2013)

    Article  Google Scholar 

  4. Park, N.N.: J. Phys. Chem. Lett. 4, 2423 (2013)

    Article  Google Scholar 

  5. K. T. Butler, J. M. Frost, A. Walsh, Mater. Horiz. 2 (2015) 228 and references therein

  6. Yang, J., Zhang, P., Wei, S.-H.: J. Phys. Chem. Lett. 9, 31 (2018)

    Article  Google Scholar 

  7. Fu, R., Chen, Y., Yong, X., Ma, Z., Wang, L., Lv, P., Lu, S., Xiao, G., Zou, B.: Nanoscale. 11, 17004 (2019)

    Article  Google Scholar 

  8. Garcia-Espejo, G., Rodriguez-Padrón, D., Luque, R., Camacho, L., de Miguel, G.: Nanoscale. 11, 16650 (2019)

    Article  Google Scholar 

  9. Kuz’min, E.V., Ovchinnikov, S.G., Singh, D.J.: Phys. Rev. B. 68, 024409 (2003)

    Article  ADS  Google Scholar 

  10. Kuz’min, E.V., Ovchinnikov, S.G., Singh, D.J.: J. Expt. Theor. Phys. 96, 96 (2003)

    Google Scholar 

  11. Gavrichkov, V.A., Ovchinnikov, S.G.: Phys. B. 259-261, 828 (1999)

    Article  ADS  Google Scholar 

  12. Gavrichkov, V.A., Ivanova, N.B., Ovchinnikov, S.G., Balaev, A.D., Aminov, T.G., Shabunina, G.G., Chervov, V.K., Petukhov, M.V.: Phys. Solid State. 41, 1652 (1999)

    Article  ADS  Google Scholar 

  13. Correa, H.P.S., Cavalcante, I.P., Souza, D.O., Santos, E.Z., Orlando, M.T.D., Belich, H., Silva, F.J., Medeiro, E.F., Pires, J.M., Passamai, J.L., Martinez, L.G., Rossi, J.L.: Cerâmica. 56, 193 (2010)

    Article  Google Scholar 

  14. Coey, J.M.D., Viret, M., von Molnar, S.: Adv. Phys. 48, 167 (1999)

    Article  ADS  Google Scholar 

  15. Zeng, Z., Faweett, I.D., Greenblatt, M., Croft, M.: Mater. Res. Bull. 36, 705 (2001)

    Article  Google Scholar 

  16. Fang, Z., Terakura, K., Kanamori, J.: Phys. Rev. B. 63, R180507 (2001)

    Article  Google Scholar 

  17. Kato, H., Okada, T., Okimoto, Y., Tomioka, Y., Oikawa, K., Kamiyama, T., Tokura, Y.: Phys. Rev. B. 69, 184412 (2004)

    Article  ADS  Google Scholar 

  18. Wolf, S.A., Awschalom, D.D., Buhram, R.A., Daughton, J.M., van Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science. 294, 1488 (2001)

    Article  ADS  Google Scholar 

  19. Wolf, S.A., Chtchelkanova, A.Y., Treger, D.M.: IBM J. Res. Dev. 50, 1 (2006)

    Article  Google Scholar 

  20. Parkin, S., Jiang, X., Kaiser, C., Pan, A.: chula, K. Roche, M. Samant. Proc. IEEE. 91, 5 (2003)

    Article  Google Scholar 

  21. de Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1984)

    Article  Google Scholar 

  22. Dowber, P.: J. Phys. Condens. Matter. 19, 310301 (2007)

    Article  Google Scholar 

  23. Coey, J.M.D., Venkatesan, M.: J. Appl. Phys. 91, 8345 (2002)

    Article  ADS  Google Scholar 

  24. Luo, Y., Ren, C., Wang, S., Li, S., Zhang, P., Yu, J., Sun, M., Sun, Z., Tang, W.: Nanoscale Res. Lett. 13, 282 (2018)

    Article  ADS  Google Scholar 

  25. Luo, Y., Wang, S., Li, S., Sun, Z., Yu, J., Teng, W., Sun, M.: Phys. E. 108, 153 (2019)

    Article  Google Scholar 

  26. Sa-Ke, W., Hong-Yu, T., Yong-Hong, Y., Jun, W.: Chin. Phys. B. 23, 017203 (2014)

    Article  ADS  Google Scholar 

  27. Wang, S., Wang, J.: Phys. B. 458, 22 (2015)

    Article  ADS  Google Scholar 

  28. Wang, S., Yu, J.: J. Supercond. Nov. Magn. 31, 2789 (2018)

    Article  Google Scholar 

  29. Meena, S., Anndeep, K.: J. Supercond. Nov. Magn. 32, 2947 (2019)

    Article  Google Scholar 

  30. Rostami, M., Afshari, M., Moradi, M.: J. Alloy. Compd. 575, 301 (2013)

    Article  Google Scholar 

  31. J. M. D. Coey, M. Venkatesan, M. A. Bari, (2002) Half-metallic ferromagnets. In: C. Berthier, L. P. Lévy, G. Martinez (eds), High magnetic fields. Lecture notes in physics, vol. 595, Springer, Berlin, Heidelberg

  32. Park, J.H., Vescovo, E., Kim, H.J., Kwon, C., Ramesh, R., Venkatesan, T.: Nature. 392, 794 (1998)

    Article  ADS  Google Scholar 

  33. Wang, J., Meng, J., Wu, Z.: Chem. Phys. Lett. 501, 324 (2011)

    Article  ADS  Google Scholar 

  34. Berri, S.: J. Magn. Magn. Mater. 385, 124 (2015)

    Article  ADS  Google Scholar 

  35. Berri, S., Chami, S., Attallah, M., Oumertem, M., Maouche, D.: Electron. Mater. 4, 13 (2018)

    Google Scholar 

  36. Samanta, K., Sanyal, P., Saha-Dasgupta, T.: Sci. Rep. 5, 15010 (2015)

    Article  ADS  Google Scholar 

  37. Dar, S.A., Srivastava, V., Sakalle, U.K.: J. Mag. Mag. Mater. 484, 298 (2019)

  38. Ding, L., Khalyavin, D.D., Manuel, P., Blake, J., Orlandi, F., Yi, W., Belik, A.A.: Acta Mater. 173, 20 (2019)

  39. Gao, Q., Ma, R.-Y., Li, L., Xie, H.-H., Deng, J.-B.: X.-R. Hu., J. Supercond. Nov. Magn.

  40. (2017) 545

  41. Nakajima, T., Kageyama, H., Yoshizawa, H., Ohoyama, K., Ueda, Y.: J. Phy. Soc. Japn. 72, 3237 (2003)

    Article  ADS  Google Scholar 

  42. Arulraj, A., Ramesha, K., Gopalakrishnan, J., Rao, C.N.R.: J. Solid State Chem. 155, 233 (2000)

    Article  ADS  Google Scholar 

  43. Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.B.: Comput. Phy. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  44. Hohenberg, P., Kohn, W.: Phy. Rev. B. 36, 864 (1964)

    Article  ADS  Google Scholar 

  45. P. Blaha, K. Schwarz, G. K. H. Medsen, D. Kvasnicka, J. Luitz, An augmented plane wave local orbitals program for calculating crystal properties, Karlheinz Schwartz (Ed.), WIEN2k, Techn. Universitad, Wien, Austria (2001)

  46. J. P. Perdew, S. Burke, M. Ernzerhof.: Phys. Rev. Lett., 77 (1996) 3865

  47. F. D. Murnaghan The compressibility of media under extreme pressures Proc. Natl. Acad. Sci. U. S. A., 30 (1944) 244

  48. Berri, S.: J. Supercond. Nov. Magn. 29, 1309 (2016)

    Article  Google Scholar 

  49. Berri, S.: J. Supercond. Nov. Magn. 29, 2381 (2016)

    Article  Google Scholar 

  50. Berri, S.: J. Supercond. Nov. Magn. 31, 1941 (2018)

    Article  Google Scholar 

  51. Hong-Zong Lin, Chia-Yang Hu, Po-Han Lee, Albert Zhong-Ze Yan, Wen-Fang Wu, Yang-Fang Chen and Yin-Kuo Wang, Materials 12 (2019)1844

  52. Zener, C.: Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  53. Anderson, P.W., Hasegawa, H.: Phys. Rev. 100, 675 (1955)

    Article  ADS  Google Scholar 

  54. Trukhanov, S.V., Trukhanov, A.V., Szymczak, H., Szymczak, R., Baran, M.: J. Phys. Chem. Solids. 67, 675 (2006)

    Article  ADS  Google Scholar 

  55. Bouadjemi, B., Bentata, S., Abbad, A., Benstaali, W., Bouhafs, B.: Solid State Commun. 168, 6 (2013)

  56. Bouadjemi, B., Bentata, S., Abbad, A., Benstaali, W.: Solid State Commun. 207, 9 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadi Berri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Appendix 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berri, S., Bouarissa, N. & Attallah, M. First-Principles Predictions on Half-Metallic Results of RBaMn2O6-δ (R = Nd, Pr, La and δ = 0, 1) Double Perovskite Compounds. J Supercond Nov Magn 33, 1737–1746 (2020). https://doi.org/10.1007/s10948-020-05426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05426-0

Keywords

Navigation