Skip to main content
Log in

Synthesis, Characterization, and Study of Thermal Response of Cu-Doped Fe3O4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (IONPs) have great importance due to their use in many biomedical applications such as contrast agents in MRI, repairing of tissues, detoxification of biological fluids, cell separation, drug delivery, immunoassay, and magnetic hyperthermia. One of the interesting properties of IONPs is to produce heat in the presence of an applied alternating magnetic field (AMF), the basic principle of magnetic hyperthermia. Here, we seek synthetic reproducibility and to optimize Fe3O4 NPs to use in magnetic hyperthermia applications. We compared the thermal efficiency of Fe3O4 NPs after doping with copper. Using co-precipitation methodology, pure and Cu-doped Fe3O4 NPs were synthesized at five different concentrations (2%, 4%, 5%, 8%, and 10%). X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to study the crystal structure and surface morphology of nanomaterials. Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV–visible spectroscopy were used to investigate the functional group, vibrational and optical properties of NPs. The thermal response of doped and undoped Fe3O4 NPs was studied by using high-frequency electromagnet driver for hyperthermia applications (HFEDHA) at 53 kHz frequency and 270 Oe magnetic field strength. To check the effects of suspension medium and variation of NP concentration in the sample on heat response and on specific absorption rate (SAR) values, the hyperthermia studies have been investigated in three biological mediums water, glycerol, and agar at four different NP concentrations 2%, 5%, 7%, and 10%. Our results show that at 2% concentration of copper in Fe3O4 NPs gave better results in all three mediums. However, they showed greater heat response and the highest SAR value in water than glycerol and agar. Further, at the lower concentration on NPs showed better thermal efficiency than higher concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Luo, S., Wang, L., Ding, W., Wang, H., Zhou, J., Jin, H., Su, S., Ouyang, W.: Clinical trials of magnetic induction hyperthermia for treatment of tumours. OA Cancer. 2(2), (2014)

  2. Torres-Lugo, M., Rinaldi, C.: Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine. 8(10), 1689–1707 (2013)

    Google Scholar 

  3. Deatsch, A.E., Evans, B.A.: Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014)

    ADS  Google Scholar 

  4. Dutz, S., Hergt, R.: Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int. J. Hyperth. 29(8), 790–800 (2013)

    Google Scholar 

  5. Fortin, J.P., Wilhelm, C., Servais, J., Ménager, C., Bacri, J.C., Gazeau, F.: Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129(9), 2628–2635 (2007)

    Google Scholar 

  6. Rosensweig, R.E.: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002)

    ADS  Google Scholar 

  7. Guardia, P., Di Corato, R., Lartigue, L., Wilhelm, C., Espinosa, A., Garcia-Hernandez, M., Gazeau, F., Manna, L., Pellegrino, T.: Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 6(4), 3080–3091 (2012)

    Google Scholar 

  8. Khandhar, A.P., Ferguson, R.M., Krishnan, K.M.: Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems. J. Appl. Phys. 109(7), 07B310 (2011)

    Google Scholar 

  9. Shaterabadi, Z., Nabiyouni, G., Soleymani, M.: High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. Mater. Sci. Eng. C. 75, 947–956 (2017)

    Google Scholar 

  10. Johannsen, M., Gneveckow, U., Taymoorian, K., Thiesen, B., Waldöfner, N., Scholz, R., Jung, K., Jordan, A., Wust, P., Loening, S.: Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int. J. Hyperth. 23(3), 315–323 (2007)

    Google Scholar 

  11. Maier-Hauff, K., Rothe, R., Scholz, R., Gneveckow, U., Wust, P., Thiesen, B., Feussner, A., von Deimling, A., Waldoefner, N., Felix, R.: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81(1), 53–60 (2007)

    Google Scholar 

  12. Wust, P., Gneveckow, U., Johannsen, M., Böhmer, D., Henkel, T., Kahmann, F., Sehouli, J., Felix, R.: Magnetic nanoparticles for interstitial thermotherapy–feasibility, tolerance and achieved temperatures. Int. J. Hyperth. 22(8), 673–685 (2006)

    Google Scholar 

  13. Huang, H.S., Hainfeld, J.F.: Intravenous magnetic nanoparticle cancer hyperthermia. Int. J. Nanomed. 8, 2521 (2013)

    Google Scholar 

  14. Albarqi, H.A., Wong, L.H., Schumann, C., Sabei, F.Y., Korzun, T., Li, X., Hansen, M.N., Dhagat, P., Moses, A.S., Taratula, O.: Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano. 13(6), 6383–6395 (2019)

    Google Scholar 

  15. Nguyen, K.L., Yoshida, T., Han, F., Ayad, I., Reemtsen, B.L., Salusky, I.B., Satou, G.M., Hu, P., Finn, J.P.: MRI with ferumoxytol: a single center experience of safety across the age spectrum. J. Magn. Reson. Imaging. 45(3), 804–812 (2017)

    Google Scholar 

  16. Xie, J., Yan, C., Yan, Y., Chen, L., Song, L., Zang, F., An, Y., Teng, G., Gu, N., Zhang, Y.: Multi-modal Mn–Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale. 8(38), 16902–16915 (2016)

    Google Scholar 

  17. Cho, M., Cervadoro, A., Ramirez, M.R., Stigliano, C., Brazdeikis, A., Colvin, V.L., Civera, P., Key, J., Decuzzi, P.: Assembly of iron oxide nanocubes for enhanced cancer hyperthermia and magnetic resonance imaging. Nanomaterials. 7(4), 72 (2017)

    Google Scholar 

  18. He, S., Zhang, H., Liu, Y., Sun, F., Yu, X., Li, X., Zhang, L., Wang, L., Mao, K., Wang, G.: Maximizing specific loss power for magnetic hyperthermia by hard–soft mixed ferrites. Small. 14(29), 1800135 (2018)

    Google Scholar 

  19. Noh, S.H., Na, W., Jang, J.T., Lee, J.H., Lee, E.J., Moon, S.H., Lim, Y., Shin, J.S., Cheon, J.: Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano. Lett. 12(7), 3716–3721 (2012)

    ADS  Google Scholar 

  20. Hayashi, K., Nakamura, M., Sakamoto, W., Yogo, T., Miki, H., Ozaki, S., Abe, M., Matsumoto, T., Ishimura, K.: Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics. 3(6), 366 (2013)

    Google Scholar 

  21. Kombaiah, K., Vijaya, J.J., Kennedy, L.J., Bououdina, M., Al-Najar, B.: Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies. J. Phys. Chem. Solids. 115, 162–171 (2018)

    ADS  Google Scholar 

  22. Abdel-Hamid, Z., Rashad, M., Mahmoud, S.M., Kandil, A.: Electrochemical hydroxyapatite-cobalt ferrite nanocomposite coatings as well hyperthermia treatment of cancer. Mater. Sci. Eng. C. 76, 827–838 (2017)

    Google Scholar 

  23. Doaga, A., Cojocariu, A.M., Amin, W., Heib, F., Bender, P., Hempelmann, R., Caltun, O.F.: Synthesis and characterizations of manganese ferrites for hyperthermia applications. Mater. Chem. Phys. 143(1), 305–310 (2013). https://doi.org/10.1016/j.matchemphys.2013.08.066

    Article  Google Scholar 

  24. Zargar, T., Kermanpur, A.: Effects of hydrothermal process parameters on the physical, magnetic and thermal properties of Zn0.3Fe2.7O4 nanoparticles for magnetic hyperthermia applications. Ceram. Int. 43(7), 5794–5804 (2017). https://doi.org/10.1016/j.ceramint.2017.01.127

  25. El-Sayed, H.M., Ali, I.A., Azzam, A., Sattar, A.A.: Influence of the magnetic dead layer thickness of Mg-Zn ferrites nanoparticle on their magnetic properties. J. Magn. Magn. Mater. 424, 226–232 (2017). https://doi.org/10.1016/j.jmmm.2016.10.049

    Article  ADS  Google Scholar 

  26. Sabale, S., Jadhav, V., Khot, V., Zhu, X., Xin, M., Chen, H.: Superparamagnetic MFe 2 O 4 (M= Ni Co, Zn, Mn) nanoparticles: synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications. J. Mater. Sci. Mater. Med. 26(3), 127 (2015)

    Google Scholar 

  27. Sahoo, Y., Goodarzi, A., Swihart, M.T., Ohulchanskyy, T.Y., Kaur, N., Furlani, E.P., Prasad, P.N.: Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J. Phys. Chem. B. 109(9), 3879–3885 (2005)

    Google Scholar 

  28. Barros, W.R.P., Steter, J.R., Lanza, M.R.V., Tavares, A.C.: Catalytic activity of Fe3−xCuxO4 (0≤x≤0.25) nanoparticles for the degradation of Amaranth food dye by heterogeneous electro-Fenton process. Appl. Catal. B. Environ. 180, 434–441 (2016). https://doi.org/10.1016/j.apcatb.2015.06.048

  29. Huang, X., Xu, C., Ma, J., Chen, F.: Ionothermal synthesis of Cu-doped Fe3O4 magnetic nanoparticles with enhanced peroxidase-like activity for organic wastewater treatment. Adv. Powder Technol. 29(3), 796–803 (2018). https://doi.org/10.1016/j.apt.2017.12.025

    Article  Google Scholar 

  30. Lassoued, A., Lassoued, M.S., Dkhil, B., Gadri, A., Ammar, S.: Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique. J. Mol. Struct. 1148, 276–281 (2017)

    ADS  Google Scholar 

  31. Lee, A.P., Webb, J., Macey, D.J., van Bronswijk, W., Savarese, A.R., de Witt, G.C.: In situ Raman spectroscopic studies of the teeth of the chiton Acanthopleura hirtosa. J. Biol. Inorg. Chem. 3(6), 614–619 (1998)

    Google Scholar 

  32. Jubb, A.M., Allen, H.C.: Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces. 2(10), 2804–2812 (2010)

    Google Scholar 

  33. Colomban, P., Cherifi, S., Despert, G.: Raman identification of corrosion products on automotive galvanized steel sheets. J. Raman. Spectrosc: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. 39(7), 881–886 (2008)

    ADS  Google Scholar 

  34. Liu, H., Li, P., Lu, B., Wei, Y., Sun, Y.: Transformation of ferrihydrite in the presence or absence of trace Fe (II): The effect of preparation procedures of ferrihydrite. J. Solid State Chem. 182(7), 1767–1771 (2009)

    ADS  Google Scholar 

  35. Jing, Z., Wu, S.: Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater. Lett. 58(27), 3637–3640 (2004). https://doi.org/10.1016/j.matlet.2004.07.010

    Article  Google Scholar 

  36. Darezereshki, E.: One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite. Mater. Lett. 65(4), 642–645 (2011). https://doi.org/10.1016/j.matlet.2010.11.030

    Article  Google Scholar 

  37. Emara, M., Goher, M., Abdo, M., El-Shamy, A., Mahmod, N.: Synthesis and characterization of Fe, Mn and superparamagnetic magnetite Fe3O4 nanoparticles. Int. J. Adv. Res. 4(9), 447–461 (2016). https://doi.org/10.21474/ijar01/1501

    Article  Google Scholar 

  38. Tang, J., Myers, M., Bosnick, K.A., Brus, L.E.: Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. J. Phys. Chem. B 107(30), 7501–7506 (2003)

    Google Scholar 

  39. Liu, H., Zhu, L., Ma, H., Wen, J., Xu, H., Qiu, Y., Zhang, L., Li, L., Gu, C.: Copper (II)-coated Fe 3 O 4 nanoparticles as an efficient enzyme mimic for colorimetric detection of hydrogen peroxide. Microchim. Acta. 186(8), 518 (2019)

    Google Scholar 

  40. Mohanraj, K., Sivakumar, G.: Synthesis of γ-Fe 2 O 3, Fe 3 O 4 and copper doped Fe 3 O 4 nanoparticles by sonochemical method. Sains Malays. 46(10), 1935–1942 (2017)

    Google Scholar 

  41. Sadat, M., Patel, R., Sookoor, J., Bud’ko, S.L., Ewing, R.C., Zhang, J., Xu, H., Wang, Y., Pauletti, G.M., Mast, D.B.: Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater. Sci. Eng. C. 42, 52–63 (2014)

    Google Scholar 

  42. Carrey, J., Mehdaoui, B., Respaud, M.: Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109(8), 083921 (2011)

  43. Batoo, K.M., Salah, D., Kumar, G., Kumar, A., Singh, M., Abd El-Sadek, M., Mir, F.A., Imran, A., Jameel, D.A.: Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 411, 91–97 (2016)

    ADS  Google Scholar 

  44. Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., Li, Y.: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117(18), 2842–2845 (2005)

    ADS  Google Scholar 

  45. Pereira, C., Pereira, A.M., Fernandes, C., Rocha, M., Mendes, R., Fernández-García, M.P., Guedes, A., Tavares, P.B., Grenèche, J.M., Araújo, J.O.P.: Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem. Mater. 24(8), 1496–1504 (2012)

  46. Sytnyk, M., Kirchschlager, R., Bodnarchuk, M.I., Primetzhofer, D., Kriegner, D., Enser, H., Stangl, J., Bauer, P., Voith, M., Hassel, A.W.: Tuning the magnetic properties of metal oxide nanocrystal heterostructures by cation exchange. Nano Lett. 13(2), 586–593 (2013)

    ADS  Google Scholar 

  47. Costa, A., Tortella, E., Morelli, M., Kiminami, R.: Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J. Magn. Magn. Mater. 256(1–3), 174–182 (2003)

    ADS  Google Scholar 

  48. Koops, C.: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    ADS  Google Scholar 

  49. Shirsath, S.E., Jadhav, S.S., Toksha, B., Patange, S., Jadhav, K.: Remarkable influence of Ce4+ ions on the electronic conduction of Ni1− 2xCexFe2O4. Scripta Mater. 64(8), 773–776 (2011)

    Google Scholar 

  50. Kolhatkar, A.G., Jamison, A.C., Litvinov, D., Willson, R.C., Lee, T.R.: Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14(8), 15977–16009 (2013)

    Google Scholar 

  51. Lahiri, B., Muthukumaran, T., Philip, J.: Magnetic hyperthermia in phosphate coated iron oxide nanofluids. J. Magn. Magn. Mater. 407, 101–113 (2016)

    ADS  Google Scholar 

  52. Kandasamy, G., Maity, D.: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496(2), 191–218 (2015)

    Google Scholar 

  53. Wang, W., Tang, B., Ju, B., Zhang, S.: Size-controlled synthesis of water-dispersible superparamagnetic Fe 3 O 4 nanoclusters and their magnetic responsiveness. RSC Adv. 5(92), 75292–75299 (2015)

    ADS  Google Scholar 

  54. Piñeiro-Redondo, Y., Bañobre-López, M., Pardiñas-Blanco, I., Goya, G., López-Quintela, M.A., Rivas, J.: The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res. Lett. 6(1), 1–7 (2011)

    Google Scholar 

  55. Hugounenq, P., Levy, M., Alloyeau, D., Lartigue, L., Dubois, E., Cabuil, V.R., Ricolleau, C., Roux, S.P., Wilhelm, C., Gazeau, F.: Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J. Phys. Chem. C. 116(29), 15702–15712 (2012)

  56. Niculaes, D., Lak, A., Anyfantis, G.C., Marras, S., Laslett, O., Avugadda, S.K., Cassani, M., Serantes, D., Hovorka, O., Chantrell, R.: Asymmetric assembling of iron oxide nanocubes for improving magnetic hyperthermia performance. ACS Nano. 11(12), 12121–12133 (2017)

    Google Scholar 

  57. Chen, S., Chiang, C.-L., Hsieh, S.: Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications. J. Magn. Magn. Mater. 322(2), 247–252 (2010)

    ADS  Google Scholar 

  58. Shah, R.R., Davis, T.P., Glover, A.L., Nikles, D.E., Brazel, C.S.: Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J. Magn. Magn. Mater. 387, 96–106 (2015)

    ADS  Google Scholar 

  59. Powell, W., Catranis, C., Maynard, C.: Design of self-processing antimicrobial peptides for plant protection. Lett. Appl. Microbiol. 31(2), 163–168 (2000)

    Google Scholar 

  60. Ishnava, K.B., Shah, P.P.: Anticariogenic and hemolytic activity of selected seed protein extracts in vitro conditions. J. Dent. (Tehran, Iran). 11(5), 576 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Jamil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue “Selected articles based on 4th International Conference on Materials Science & Nanotechnology”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, M.Z., Jamil, Y., Javed, Y. et al. Synthesis, Characterization, and Study of Thermal Response of Cu-Doped Fe3O4 Nanoparticles. J Supercond Nov Magn 34, 3209–3221 (2021). https://doi.org/10.1007/s10948-021-05990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05990-z

Keywords

Navigation