Skip to main content
Log in

Theoretical Investigation of Phase Diagrams and Compensation Behaviors of a Ferrimagnetic Mixed-Spin (3/2,2) Ising Nanowire with Cylindrical Core-Shell Structure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we use effective field theory (EFT) based on the probability distribution technique to study the magnetic properties (phase diagrams and magnetization curves) of a cylindrical mixed-spin (3/2, 2) nanowire. The system has a core-shell composition, where the core consists of \(3/2-\)spins coupled to the \(2-\)spins of the shell in a ferrimagnetic manner. The effect of reduced coupling constants, uniaxial anisotropy on the system, as well as different types of magnetization such as P-type, Q-type, and the N-type characteristic of compensation behavior are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Winkler, N., Leuthold, J., Lei, Y., Wilde, G.: J. Mater. Chem. 22, 16627 (2012)

    Article  Google Scholar 

  2. Ivanov, Y.P., Chuvilin, A., Lopatin, S., Kosel, J.: ACS Nano 10, 5326 (2016)

    Article  Google Scholar 

  3. Schulz, M.J., Shanov, V.N., Yun, Y.: Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices. Artech House, Boston (2009)

    Google Scholar 

  4. Ivanov, Y.P., Alfadhel, A., Alnassar, M., Perez, J.E., Vazquez, M., Chuvilin, A., Kosel, J.: Sci. Rep. 6, 24189 (2016)

    Article  ADS  Google Scholar 

  5. Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3414 (2010)

    ADS  Google Scholar 

  6. Keskin, M., Şarlı, N., Deviren, B.: Solid State Commun. 151, 1025 (2011)

    Article  ADS  Google Scholar 

  7. Iglesias, O., Labarta, A.: Phys. Rev. B 63, 184416 (2001)

  8. Iglesias, O., Batlle, X., Labarta, A.: Phys. Rev. B 72, 212401 (2005)

  9. Vasilakaki, M., Trohidou, K.N.: Phys. Rev. B 79, 144402 (2009)

  10. Yuksel, Y., Aydiner, E., Polat, H.: J. Magn. Magn. Mater. 323, 3168 (2011)

    Article  ADS  Google Scholar 

  11. Wesselinowa, J.M.: J. Magn. Magn. Mater. 322, 234 (2010)

    Article  ADS  Google Scholar 

  12. Wesselinowa, J.M., Apostolova, I.: J. Appl. Phys. 104, 084108 (2008)

  13. Rego, L.G.C., Figueiredo, W.: Phys. Rev. B 64, 144424 (2001)

  14. Kaneyoshi, T., Sarmento, E.F., Fittipaldi, I.F.: Phys. Status Solidi B 150, 261 (1988)

    Article  ADS  Google Scholar 

  15. Kaneyoshi, T., Chen, J.C.: J. Magn. Magn. Mater. 98, 201 (1991)

    Article  ADS  Google Scholar 

  16. Plascak, J.A.: Phys. A 198, 665 (1993)

    Article  Google Scholar 

  17. Zhang, G.M., Yang, C.Z.: Phys. Rev. B 48, 9452 (1993)

    Article  ADS  Google Scholar 

  18. Buendia, G.M., Novotny, M.A., Zhang, J.: Springer Proceeds in Physics 78. In: Landau, D.P., Mon, K.K., Schuttler, H.B. (eds.) Computer Simulations in Condensed Matter Physics, p. 223. Vol.VII, Springer, Heidelberg (1994)

    Google Scholar 

  19. Jascur, M., Kaneyoshi, T.: Phys. B 215, 318 (1995)

    Article  ADS  Google Scholar 

  20. Bobak, A., JaVsVcur, M.: Phys. Rev. B 51, 11533 (1995)

  21. Xin, Z.H., Wie, G.Z., Liu, T.S.: J. Magn. Magn. Mater. 176, 206 (1997)

    Article  ADS  Google Scholar 

  22. Xin, Z.H., Wei, G.Z., Liu, T.S.: Phys. Status Solidi B 209, 145 (1998)

    Article  ADS  Google Scholar 

  23. Leite, V.S., Figueiredo, W.: Phys. A 350, 379 (2005)

    Article  Google Scholar 

  24. Su, Y.C., Skomski, R., Sorge, K.D., Sellmyer, D.J.: Appl. Phys. Lett. 84, 1525 (2004)

    Article  ADS  Google Scholar 

  25. Konstantinova, E.: J. Magn. Magn. Mater. 320, 2721 (2008)

    Article  ADS  Google Scholar 

  26. Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3014 (2010)

    Article  ADS  Google Scholar 

  27. Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3410 (2010)

    Article  ADS  Google Scholar 

  28. Keskin, M., Sarli, N., Deviren, B.: Solid State Commun. 151, 1025 (2011)

    Article  ADS  Google Scholar 

  29. Canko, O., Erdinç, A., Taskin, F., Atis, M.: Phys. Lett. A 375, 3547 (2011)

    Article  ADS  Google Scholar 

  30. Masrour, R., Bahmad, L., Hamedoun, M., Benyoussef, A., Hlil, E.K.: Solid State Commun. 162, 53 (2013)

    Article  ADS  Google Scholar 

  31. Htoutou, K., Nmaila, B., Madani, M., Drissi, L.B., Laamara, R.A.: Materials Research Express 4(11), 116108 (2017)

  32. Bakuzis, A.F., Morais, P.C.: J. Magn. Magn. Mater. 285, 145 (2005)

    Article  ADS  Google Scholar 

  33. Vasilakaki, M., Trohidou, K.N.: Phys. Rev. B 79, 144402 (2009)

  34. Htoutou, K., Ainane, A., Saber, M.: J. Magn. Magn. Mater. 269(2), 245 (2004)

    Article  ADS  Google Scholar 

  35. Htoutou, K., et al.: J. Magn. Magn. Mater. 288, 259 (2005)

    Article  ADS  Google Scholar 

  36. Tucker, J.W., Saber, M., Peliti, L.: Physica A 206, 497 (1994)

  37. Saber, M. et al.: Phys. Scr. 59(1), 72 (1999)

  38. Hashimoto, S., Ohkoshi, K.: Phil. Trans. R. Soc. A357, 2977 (1999)

    Article  ADS  Google Scholar 

  39. Masrour, R., et al.: Phys. B Condens. Matter 472, 19–24 (2015)

    Article  ADS  Google Scholar 

  40. N’eel, L.: Ann. Phys. 3, 137 (1948)

  41. Mansuripur, M.: J. Appl. Phys. 61, 1580 (1987)

  42. Khan, O.: Molecular Magnetism. VCH Publisher, New York (1993)

  43. Boughrara, M., Kerouad, M., Zaim, A.: J. Magn. Magn. Mater. 360, 222–228 (2014)

    Article  ADS  Google Scholar 

  44. Zounmenou, N.F., et al.: Appl. Phys. A 126(9), 1–13 (2020)

    Article  Google Scholar 

  45. Benhouria, Y., et al.: J. Supercond. Nov. Magn. 33(3), 817–824 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge nancial support from the National Centre for Scientific and Technical Research (CNRST) -Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arbaoui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The probability distributions of the spin states \((S=3/2)\) and \((\mu =2)\) are as follows:

$$\begin{aligned} p_{i}\left( S_{iz}\right)= & {} \frac{1}{48}[\left( -3-2(m_{iz}^{c})_{\alpha }+12(q_{iz}^{c})_{\alpha }+8(r_{iz}^{c})_{\alpha }\right) \delta \left( S_{iz}+\frac{3}{2}\right) \\ \nonumber&+3\left( 9+18(m_{iz}^{c})_{\alpha }-4(q_{iz}^{c})_{\alpha }-8(r_{iz}^{c})_{\alpha }\right) \delta \left( S_{iz}+\frac{1}{2}\right) \nonumber \\ \nonumber&+3\left( 9-18(m_{iz}^{c})_{\alpha }-4(q_{iz}^{c})_{\alpha }+8(r_{iz}^{c})_{\alpha }\right) \delta \left( S_{iz}-\frac{1}{2}\right) \nonumber \\ \nonumber&+\left( -3+2(m_{iz}^{c})_{\alpha }+12(q_{iz}^{c})_{\alpha }-8(r_{iz}^{c})_{\alpha }\right) \delta \left( S_{iz}-\frac{3}{2}\right)] \end{aligned}$$
(11)

and :

$$\begin{aligned} p_{k}(\mu _{kz})= & {} \frac{1}{24}[(24-30(q_{iz}^{s})_{\eta }+6(t_{z}^{s})_{\eta })\delta \left( \mu _{kz}^{s}\right) \\ \nonumber&+(2(m_{z}^{s})_{\eta }-(q_{z}^{s})_{\eta }-2(r_{z}^{s})_{\eta }+(t_{z}^{s})_{\eta })\delta \left( \mu _{kz}+2\right) \nonumber \\ \nonumber&+(-16(m_{z}^{s})_{\eta }+16(q_{z}^{s})_{\eta }+4(r_{z}^{s})_{\eta }-4(t_{z}^{s})_{\eta })\delta \left( \mu _{kz}+1\right) \nonumber \\ \nonumber&+(16(m_{z}^{s})_{\eta }+16(q_{z}^{s})_{\eta }-4(r_{z}^{s})_{\eta }-4(t_{z}^{s})_{\eta })\delta (\mu _{kz}-1) \nonumber \\ \nonumber&+(-2(m_{z}^{s})_{\eta }-(q_{z}^{s})_{\eta }+2(r_{z}^{s})_{\eta }+(t_{z}^{s})_{\eta })\delta \left( \mu _{kz}-2\right)].\end{aligned}$$
(12)

For the core sites, we have :

$$\begin{aligned} \langle \langle (S_{z})_{1}^{p}\rangle \rangle = &\; \frac{1}{48^{N_{1}^{c}}}\underset{\nu _{1}=0}{\overset{N_{1}^{c}}{\sum }}\underset{\nu _{2}=0}{\overset{N_{1}^{c}-\nu _{1}}{\sum }}\underset{\nu _{3}=0}{\overset{N_{1}^{c}-\nu _{1}-\nu _{2}}{\sum }C_{\nu _{1}}^{N_{1}^{c}}}{\small C}_{\nu _{2}}^{N_{1}^{c}-\nu _{1}}{\small C}_{\nu _{3}}^{N_{1}^{c}-\nu _{1}-\nu _{2}}\\&\times \left( -3-2(m_{z}^{c})_{2}+12(q_{z}^{c})_{2}+8(r_{z}^{c})_{2}\right) ^{\nu _{1}}\\ &\times \left( 27-54(m_{z}^{c})_{2}-12(q_{z}^{c})_{2}+24(r_{z}^{c})_{2}\right) ^{\nu _{2}}\\ &\times \left( 27+54(m_{z}^{c})_{2}-12(q_{z}^{c})_{2}-24(r_{z}^{c})_{2}\right) ^{\nu _{3}}\\ &\times \left( -3-2(m_{z}^{c})_{2}+12(q_{z}^{c})_{2}+8(r_{z}^{c})_{2}\right) ^{N_{0}-\nu _{1}-\nu _{2}-\nu _{3}}\\ &\times G_{pz}(\frac{1}{2}\left[ 3N_{1}^{c}-6\nu _{1}-4\nu _{2}-2\nu _{3}\right] ,D_{z}^{(c)})\end{aligned}$$
(13)
$$\begin{aligned} \langle \langle (S_{z})_{2}^{p}\rangle \rangle= & {} \frac{1}{24^{N_{2}^{s}}}\frac{1}{48^{N_{2}^{c}}}\underset{\nu _{1}=0}{\overset{N_{2}^{c,1}}{\sum }}\underset{\nu _{2}=0}{\overset{N_{2}^{c,1}-\nu _{1}}{\sum }}\underset{\nu _{3}=0}{\overset{N_{2}^{c,1}-\nu _{1}-\nu _{2}}{\sum }}\underset{\gamma _{1}=0}{\overset{N_{2}^{c,2}}{\sum }}\underset{\gamma _{2}=0}{\overset{N_{2}^{c,2}-\gamma _{1}}{\sum }}\underset{\gamma _{3}=0}{\overset{N_{2}^{c,2}-\gamma _{1}-\gamma _{2}}{\sum }}\underset{k_{1}=0}{\overset{N_{2}^{s,1}}{\sum }}\\ &\underset{k_{2}=0}{\overset{N_{2}^{s,1}-k_{1}}{\sum }}\underset{k_{3}=0}{\overset{N_{2}^{s,1}-k_{1}-k_{2}}{\sum }}\underset{k_{4}=0}{\overset{N_{2}^{s,1}-k_{1}-k_{2}-k_{3}}{\sum }}\underset{j_{1}=0}{\overset{N_{2}^{s,2}}{\sum }}\underset{j_{2}=0}{\overset{N_{2}^{s,2}-j_{1}}{\sum }}\underset{j_{3}=0}{\overset{N_{2}^{s,2}-j_{1}-j_{2}}{\sum }}\underset{j_{4}=0}{\overset{N_{2}^{s,2}-j_{1}-j_{2}-j_{3}}{\sum }}\\ &{\small C}_{\nu _{1}}^{N_{2}^{c,1}}{\small C}_{\nu _{2}}^{N_{2}^{c,1}-\nu _{1}}{\small C}_{\nu _{3}}^{N_{2}^{c,1}-\nu _{1}-\nu _{2}}{\small C}_{\gamma _{1}}^{N_{2}^{c,2}}{\small C}_{\gamma _{2}}^{N_{2}^{c,2}-\gamma _{1}}{\small C}_{\gamma _{3}}^{N_{2}^{c,2}-\gamma _{1}-\gamma _{2}}{\small C}_{k_{1}}^{N_{2}^{s,1}}{\small C}_{k_{2}}^{N_{2}^{s,1}-k_{1}} \\&{\small C}_{k_{3}}^{N_{2}^{s,1}-k_{1}-k_{2}}{\small C}_{k_{4}}^{N_{2}^{s,1}-k_{1}-k_{2}-k_{3}}{\small C}_{j_{1}}^{N_{2}^{s,2}}{\small C}_{j_{2}}^{N_{2}^{s,2}-j_{1}}{\small C}_{j_{3}}^{N_{2}^{s,2}-j_{1}-j_{2}}{\small C}_{j_{4}}^{N_{2}^{s,2}-j_{1}-j_{2}-j_{3}}\\ &\times \left( -3+2(m_{z}^{c})_{1}+12(q_{z}^{c})_{1}-8(r_{z}^{c})_{1}\right) ^{\nu _{1}}\times( 27-54(m_{z}^{c})_{1}\\ &-12(q_{z}^{c})_{1}+24(r_{z}^{c})_{1}) ^{\nu _{2}}\times \left.( 27+54(m_{z}^{c})_{1}-12(q_{z}^{c})_{1}-24(r_{z}^{c})_{1}\right.) ^{\nu _{3}}\\ &\times \left( -3-2(m_{z}^{c})_{1}+12(q_{z}^{c})_{1}+8(r_{z}^{c})_{1}\right) ^{N_{2}^{c,1}-\nu _{1}-\nu _{2}-\nu _{3}}\times ( -3\\ &+2(m_{z}^{c})_{2}+12(q_{z}^{c})_{2}-8(r_{z}^{c})_{2}) ^{\gamma _{1}}\times ( 27-54(m_{z}^{c})_{2}-12(q_{z}^{c})_{2}\\&+24(r_{z}^{c})_{2}) ^{\gamma _{2}}\times\left( 27+54(m_{z}^{c})_{2}-12(q_{z}^{c})_{2}-24(r_{z}^{c})_{2}\right) ^{\gamma _{3}}\\ &\times \left( -3-2(m_{z}^{c})_{2}+12(q_{z}^{c})_{2}+8(r_{z}^{c})_{2}\right) ^{N_{2}^{c,2}-\gamma _{1}-\gamma _{2}-\gamma _{3}}\times (24-30(q_{z}^{s})_{1}\\&+6(t_{z}^{s})_{1})^{k_{1}}\times (2(m_{z}^{s})_{1}-(q_{z}^{s})_{1}-2(r_{z}^{s})_{1}+(t_{z}^{s})_{1})^{k_{2}}\times (-16(m_{z}^{s})_{1}\\ &+16(q_{z}^{s})_{1}+4(r_{z}^{s})_{1}-4(t_{z}^{s})_{1})^{k_{3}}\times (16(m_{z}^{s})_{1}+16(q_{z}^{s})_{1}-4(r_{z}^{s})_{1}\\ &-4(t_{z}^{s})_{1})^{k_{4}}\times (-2(m_{z}^{s})_{1}-(q_{z}^{s})_{1}+2(r_{z}^{s})_{1}+(t_{z}^{s})_{1})^{N_{2}^{s,1}-k_{1}-k_{2}-k_{3}-k_{4}}\\ &\times (24-30(q_{z}^{s})_{2}+6(t_{z}^{s})_{2})^{j_{1}}\times (2(m_{z}^{s})_{2}-(q_{z}^{s})_{2}-2(r_{z}^{s})_{2}+(t_{z}^{s})_{2})^{j_{2}}\\ &\times (-16(m_{z}^{s})_{2}+16(q_{z}^{s})_{2}+4(r_{z}^{s})_{2}-4(t_{z}^{s})_{2})^{j_{3}}\times(16(m_{z}^{s})_{2}\\&+16(q_{z}^{s})_{2}-4(r_{z}^{s})_{2}-4(t_{z}^{s})_{2})^{j_{4}}\times (-2(m_{z}^{s})_{2}-(q_{z}^{s})_{2}+2(r_{z}^{s})_{2}\\&+(t_{z}^{s})_{2})^{N_{2}^{s,2}-j_{1}-j_{2}-j_{3}-j_{4}}\times G_{pz}^{(c)}(\frac{1}{2}[3(N_{2}^{c,1}+N_{2}^{c,2})\\ &-6(\nu _{1}+\gamma _{1})-4(\nu _{2}+\gamma _{2})-2(\nu _{3}+\gamma _{3})] +R_{cs}[2(N_{2}^{s,1}+N_{2}^{s,2})\\&-2(k_{1}+j_{1})-3(k_{3}+j_{3})-4(k_{2}+j_{2})-(k_{4}+j_{4})],D_{z}^{(c)}), \end{aligned}$$
(14)

and for the shell sites, we have :

$$\begin{aligned} \langle \langle (\mu _{z})_{1}^{p}\rangle \rangle= & {} \frac{1}{24^{N_{1}^{s}}}\frac{1}{48^{N_{1}^{c}}}\underset{\nu _{1}=0}{\overset{N_{1}^{c}}{\sum }}\underset{\nu _{2}=0}{\overset{N_{1}^{c}-\nu _{1}}{\sum }}\underset{\nu _{3}=0}{\overset{N_{1}^{c}-\nu _{1}-\nu _{2}}{\sum }}\underset{k_{1}=0}{\overset{N_{1}^{s}}{\sum }}\underset{k_{2}=0}{\overset{N_{1}^{s}-k_{1}}{\sum }}\underset{k_{3}=0}{\overset{N_{1}^{s}-k_{1}-k_{2}}{\sum }}\underset{k_{4}=0}{\overset{N_{1}^{s}-k_{1}-k_{2}-k_{3}}{\sum }}\\ &{\small C}_{\nu _{1}}^{N_{1}^{c}}{\small C}_{\nu _{2}}^{N_{1}^{c}-\nu _{1}}{\small C}_{\nu _{3}}^{N_{1}^{c}-\nu _{1}-\nu _{2}}{\small C}_{k_{1}}^{N_{1}^{s}}{\small C}_{k_{2}}^{N_{1}^{s}-k_{1}}{\small C}_{k_{3}}^{N_{1}^{s}-k_{1}-k_{2}}{\small C}_{k_{4}}^{N_{1}^{s}-k_{1}-k_{2}-k_{3}}\\&{\small C}_{k_{4}}^{N_{1}^{s}-k_{1}-k_{2}-k_{3}}\times \left( -3+2(m_{z}^{c})_{2}+12(q_{z}^{c})_{2}-8(r_{z}^{c})_{2}\right) ^{\nu _{1}}\\ &\times \left( 27-54(m_{z}^{c})_{2}-12(q_{z}^{c})_{2}+24(r_{z}^{c})_{2}\right) ^{\nu _{2}}\times ( 27+54(m_{z}^{c})_{2}\\&-12(q_{z}^{c})_{2}-24(r_{z}^{c})_{2}) ^{\nu _{3}}\times( -3-2(m_{z}^{c})_{2}+12(q_{z}^{c})_{2}\\ &+8(r_{z}^{c})_{2}) ^{N_{1}^{c}-\nu _{1}-\nu _{2}-\nu _{3}}\times (24-30(q_{z}^{s})_{2}+6(t_{z}^{s})_{2})^{k_{1}}\\&\times (2(m_{z}^{s})_{2}-(q_{z}^{s})_{2}-2(r_{z}^{s})_{2}+(t_{z}^{s})_{2})^{k_{2}}\times (-16(m_{z}^{s})_{2}\\&+16(q_{z}^{s})_{2}+4(r_{z}^{s})_{2}-4(t_{z}^{s})_{2})^{k_{3}}\times (16(m_{z}^{s})_{2}+16(q_{z}^{s})_{2}\\ &-4(r_{z}^{s})_{2}-4(t_{z}^{s})_{2})^{k_{4}}\times (-2(m_{z}^{s})_{2}-(q_{z}^{s})_{2}+2(r_{z}^{s})_{2}\\&+(t_{z}^{s})_{2})^{N_{1}^{s}-k_{1}-k_{2}-k_{3}-k_{4}}\times F_{pz}^{(s)}(\frac{1}{2}[ 3N_{1}^{c}-6\nu _{1}\\&-4\nu _{2}-2\nu _{3}]+R_{cs}[2N_{1}^{s}-2k_{1}-3k_{3}-4k_{2}-k_{4}] ,D_{z}^{(s)}), \end{aligned}$$
(15)
$$\begin{aligned} \langle \langle (\mu _{z})_{2}^{p}\rangle \rangle= & {} \frac{1}{24^{N_{2}^{s}}}\frac{1}{48^{N_{2}^{c}}}\underset{\nu _{1}=0}{\overset{N_{2}^{c}}{\sum }}\underset{\nu _{2}=0}{\overset{N_{2}^{c}-\nu _{1}}{\sum }}\underset{\nu _{3}=0}{\overset{N_{2}^{c}-\nu _{1}-\nu _{2}}{\sum }}\underset{k_{1}=0}{\overset{N_{2}^{s}}{\sum }}\underset{k_{2}=0}{\overset{N_{2}^{s}-k_{1}}{\sum }}\underset{k_{3}=0}{\overset{N_{2}^{s}-k_{1}-k_{2}}{\sum }}\underset{k_{4}=0}{\overset{N_{2}^{s}-k_{1}-k_{2}-k_{3}}{\sum }}\\&{\small C}_{\nu _{1}}^{N_{2}^{c}}{\small C}_{\nu _{2}}^{N_{2}^{c}-\nu _{1}}{\small C}_{\nu _{3}}^{N_{2}^{c}-\nu _{1}-\nu _{2}}{\small C}_{k_{1}}^{N_{2}^{s}} {\small C}_{k_{2}}^{N_{2}^{s}-k_{1}}{\small C}_{k_{3}}^{N_{2}^{s}-k_{1}-k_{2}}{\small C}_{k_{4}}^{N_{2}^{s}-k_{1}-k_{2}-k_{3}}\\&\times \left( -3+2(m_{z}^{c})_{2}+12(q_{z}^{c})_{2}-8(r_{z}^{c})_{2}\right) ^{\nu _{1}}\times( 27-54(m_{z}^{c})_{2}\\&-12(q_{z}^{c})_{2}+24(r_{z}^{c})_{2}) ^{\nu _{2}}\times ( 27+54(m_{z}^{c})_{2}-12(q_{z}^{c})_{2}\\&-24(r_{z}^{c})_{2}) ^{\nu _{3}}\times ( -3-2(m_{z}^{c})_{2}+12(q_{z}^{c})_{2}\\&+8(r_{z}^{c})_{2}) ^{N_{2}^{c}-\nu _{1}-\nu _{2}-\nu _{3}}\times (24-30(q_{z}^{s})_{1}+6(t_{z}^{s})_{1})^{k_{1}}\\ &\times (2(m_{z}^{s})_{1}-(q_{z}^{s})_{1}-2(r_{z}^{s})_{1}+(t_{z}^{s})_{1})^{k_{2}} \times (-16(m_{z}^{s})_{1}\\ &+16(q_{z}^{s})_{1}+4(r_{z}^{s})_{1}-4(t_{z}^{s})_{1})^{k_{3}}\times (16(m_{z}^{s})_{1}+16(q_{z}^{s})_{1}\\&-4(r_{z}^{s})_{1}-4(t_{z}^{s})_{1})^{k_{4}}\times (-2(m_{z}^{s})_{1}-(q_{z}^{s})_{1}+2(r_{z}^{s})_{1}\\ &+(t_{z}^{s})_{1})^{N_{2}^{s}-k_{1}-k_{2}-k_{3}-k_{4}}\times F_{pz}^{(s)}(\frac{1}{2}[ 3N_{2}^{c}-6\nu _{1}-4\nu _{2}-2\nu _{3}]\\ &+R_{cs}[2N_{2}^{s}-2k_{1}-3k_{3}-4k_{2}-k_{4}] ,D_{z}^{(s)}). \end{aligned}$$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbaoui, A., Htoutou, K., Drissi, L.B. et al. Theoretical Investigation of Phase Diagrams and Compensation Behaviors of a Ferrimagnetic Mixed-Spin (3/2,2) Ising Nanowire with Cylindrical Core-Shell Structure. J Supercond Nov Magn 34, 3413–3423 (2021). https://doi.org/10.1007/s10948-021-05985-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05985-w

Keywords

Navigation