Skip to main content
Log in

Thermoelectric Properties of SrTi(1 − x)Zr(x)O3 Alloys: a First-Principle Study

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We present a methodical study of the thermoelectric properties of SrTi(1 − x)Zr(x)O3 (0 ≤ x ≤ 1), noting that STZO alloy using a computational quantum mechanical modelling method used in physics, density-functional theory (DFT), with full potential-linearised augmented plane wave (FP-LAPW) as used in Wien2K code with the Perdew Burke Ernzerhof (PBE) exchange correlation function under GGA was used for calculations. The thermoelectric properties including Seebeck coefficient, electrical conductivity, and thermal conductivity of SrTi(1 − x)Zr(x)O3 with x = 0.0, 0.25, 0.50, 0.75, and 1 are calculated by BoltzTrap code which uses Boltzmann transport phenomenon that is used for estimating transport properties of thermoelectric materials. The average values of electrical conductivity, thermal conductivity, and Seebeck coefficient with chemical potential are presented. We expect the STZO alloys to be good for thermoelectric applications. We also analysed the electrical conductivity, thermal conductivity, Seebeck coefficient, power factor, and the resistivity versus variable temperature, in which the maximum power factors are evaluated, suggesting that the compounds have good thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shakouri, A.: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)

    Article  ADS  Google Scholar 

  2. Preeti, K., Vipul, S.: Thermoelectric properties of strontium related perovskite SrBO3 compounds, 2019 JETIR. 6(1) (2019)

  3. Shanmugapriya, K., Palanivel, B., Murugan, R.: Electronic and thermoelectric properties of SrTiO3. Current Smart Materials 2(1), 73–79 (2017)

    Article  Google Scholar 

  4. Ioffe, A.F.: Semiconductor thermoelements, and thermoelectric cooling, 1st edn. Info-search Ltd., London, UK (1957)

    Google Scholar 

  5. Snyder, G.J, Eric, S., Toberer, S.: Complex thermoelectric materials. Nature Mater 7, 105–114 (2008)

  6. Bhat, T.M., Gupta, D.C.: RSC. Adv. 6, 80302 (2016)

    Article  ADS  Google Scholar 

  7. Yousuf, S., Gupta, D.C.: Mat. Chem. Phy. 192, 33 (2017)

    Article  Google Scholar 

  8. Khandy S.A., Gupta, D.C.: Int. J. Quantum Chem

  9. Madsen, G.K.H., Singh, D.J.: Comput. Phys. Commun. 175, 67–71 (2006)

    Article  ADS  Google Scholar 

  10. Kasap, S.O.: Thermoelectrical effects in metals: thermocouples, e-Booklet (1990–2001)

  11. Kim, S.-H., et al.: J. Mater. Sci. 34, 3057–3061 (1999)

    Article  ADS  Google Scholar 

  12. PAN H.L., et al.: Adv. Mater. Res. 846–847, 1919–1922 (2014)

  13. Haas, P., Tran, F., Blaha, P.: Phys. Rev. B. 79, 085104 (2009)

  14. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  15. Perdew, J.P., Staroverov, V.N., Tao, J., Scuseria, G.E.: Phys. Rev. A. 78, 052513 (2008)

  16. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k:an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna (2001)

    Google Scholar 

  17. Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 5188 (1976)

  18. Madsen, G.K.H., Carrete, J., Verstraete, M.J.: Comput. Phys. Commun. 231, 140 (2018). https://doi.org/10.1016/j.cpc.2018.05.010

    Article  ADS  Google Scholar 

  19. Parida A.S, Rout, S.K., et al.: Structural, microwave dielectric properties and dielectric resonator antenna studies of SrTi(1 − x)Zr(x)O3 ceramics, J. Alloys Comp. 528, 126–134 (2012). https://doi.org/10.1016/j.jallcom.2012.03.047

  20. Wong, T.K., Kennedy, B.J., Howard, C.J., Hunter, B.A., Vogt, T.: J. Solid State Chem. 156, 255–263 (2001)

    Article  ADS  Google Scholar 

  21. Mubarak, A.A.: The first-principle study of the electronic, optical and thermoelectric properties of XTiO3 (X = Ca, Sr and Ba) compounds. Int. J. Mod. Phys. B 30, 1650141 (2016)

    Article  ADS  Google Scholar 

  22. Vegard, L.: Die konstitution der mischkristalle und die raumfüllung der atome. Zeitschrift für Physik. 5(1), 17–26 (1921). Bibcode:1921ZPhy....5...17V. https://doi.org/10.1007/BF01349680. S2CID 120699637

  23. Gibbs, Z.M. Kim, H.S., Wang, H., Snyder, G.J.: Band gap estimation from temperature dependent Seebeck measurement—deviations from the 2e|S|maxTmax relation. Appl. Phy. Lett. 106, 022112 (2015)

  24. Structural and electronic properties of SrZrO3 and Sr(Ti,Zr)O3 alloys. https://doi.org/10.1103/physrevb.92.085201

  25. Kennedy, B.J., Howard, C.J., Thorogood, G.J., Hester, J.R.: J. Solid State Chemistry 161, 106–112 (2001). https://doi.org/10.1088/0953-8984/21/1/015902

    Article  ADS  Google Scholar 

  26. Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Tedjani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedjani, M. Thermoelectric Properties of SrTi(1 − x)Zr(x)O3 Alloys: a First-Principle Study. J Supercond Nov Magn 34, 2479–2484 (2021). https://doi.org/10.1007/s10948-021-05935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05935-6

Keywords

Navigation