Skip to main content
Log in

Chemical Potential Evaluation of Thermoelectric and Mechanical Properties of Zr2CoZ (Z = Si, Ge) Heusler Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic, mechanical and thermoelectric properties of Zr2CoZ (Z = Si, Ge) Heusler alloys are investigated by the full-potential linearized augmented plane wave method. Using the Voigt–Reuss approximation, we calculated the various elastic constants, the shear and Young’s moduli, and Poisson’s ratio which predict the ductile nature of the alloys. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing a linearly increasing Seebeck coefficient with temperature mainly because of the existence of almost flat conduction bands along L to Г directions of a high symmetry Brillouin zone. The efficiency of conversion was measured as the figure of merit by taking into effect the lattice thermal part that achieves an upper-limit of 0.14 at 1200 K which may favour their use for waste heat recovery at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, eds., CRC Handbook of Thermoelectrics (Boca Raton: CRC, 1995).

    Google Scholar 

  2. K. Matsubara, in International Conference on Thermoelectrics (2002), p. 418

  3. I.H. Bhat, S. Yousuf, T.M. Bhat, and D.C. Gupta, J. Magn. Magn. Mater. 395, 81 (2015).

    Article  Google Scholar 

  4. T.M. Bhat and D.C. Gupta, RSC Adv. 6, 80302 (2016).

    Article  Google Scholar 

  5. S.A. Khandy and D.C. Gupta, RSC Adv. 6, 97641 (2016).

    Article  Google Scholar 

  6. S.A. Khandy and D.C. Gupta, Int. J. Quantum Chem. 117, e25351 (2017).

  7. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003).

    Article  Google Scholar 

  8. C. Uher, Thermoelectric Materials Research I. Semiconductors and Semimetals Series, Vol. 69, ed. T. Tritt (Amsterdam: Elsevier, 2001), pp. 139–253.

    Google Scholar 

  9. G.S. Nolas, J. Poon, and M. Kanatzidis, Mater. Res. Soc. Bull. 31, 199 (2006).

    Article  Google Scholar 

  10. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  11. A.D. LaLonde, Y. Pei, H. Wang, and G.J. Snyder, Mater. Today 14, 526 (2011).

    Article  Google Scholar 

  12. P. Jood, Nano Lett. 11, 4337 (2011).

    Article  Google Scholar 

  13. G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, and Zhifeng Ren, Adv. Energy Mater. 1, 643 (2011).

    Article  Google Scholar 

  14. S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scripta Mater. 66, 1073 (2012).

    Article  Google Scholar 

  15. S.J. Poon, Semicond. Semimet. 70, 37 (2001).

    Article  Google Scholar 

  16. E. Rausch, B. Balke, S. Ouardi, and C. Felser, Energy Technol. 3, 1217 (2015).

    Article  Google Scholar 

  17. J.W.G. Bos and R.A. Downie, J. Phys.: Condens. Matter 26, 433201 (2014).

    Google Scholar 

  18. J. Barth, G.H. Fecher, B. Balke, S. Ouardi, T. Graf, C. Felser, A. Shkabko, A. Weidenkaff, P. Klaer, and H.J. Elmers, Phys. Rev. B 81, 064404 (2010).

    Article  Google Scholar 

  19. T. Graf, J. Barth, B. Balke, S. Populoh, A. Weidenkaff, and C. Felser, Scr. Mater. 63, 925 (2010).

    Article  Google Scholar 

  20. B. Balke, S. Ouardi, T. Graf, J. Barth, C.G.F. Blum, G.H. Fecher, A. Shkabko, A. Weidenkaff, and C. Felser, Solid State Commun. 150, 529 (2010).

    Article  Google Scholar 

  21. T. Graf, J. Barth, C.G.F. Blum, B. Balke, and C. Felser, Phys. Rev. B 82, 104420 (2010).

    Article  Google Scholar 

  22. A.H. Reshak, RSC Adv. 4, 39569 (2014).

    Google Scholar 

  23. P. Mohankumar, S. Ramasubramanian, M. Rajagopalan, M.M. Raja, S.V. Kamat, and J. Kumar, Comput. Mater. Sci. 109, 34 (2015).

    Article  Google Scholar 

  24. S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser, H.J. Lin, and J. Morais, Phys. Rev. B 72, 184434 (2005).

    Article  Google Scholar 

  25. G.E.W. Bauer, E. Saitoh, and B.J. van Wees, Nat. Mater. 11, 391 (2012).

    Article  Google Scholar 

  26. A. Slachter, F.L. Bakker, J.P. Adam, and B.J. van Wees, Nat. Phys. 6, 879 (2010).

    Article  Google Scholar 

  27. D.C. Gupta and I.H. Bhat, Mater. Chem. Phys. 146, 303 (2014).

    Article  Google Scholar 

  28. D.C. Gupta and I.H. Bhat, Mater. Sci. Eng., B 193, 70 (2015).

    Article  Google Scholar 

  29. T.M. Bhat and D.C. Gupta, J. Electron. Mater. 45, 6012 (2016).

    Article  Google Scholar 

  30. D.C. Gupta and I.H. Bhat, J. Magn. Magn. Mater. 374, 209 (2015).

    Article  Google Scholar 

  31. S. Yousuf and D.C. Gupta, Mater. Chem. Phys. 192, 33 (2017).

    Article  Google Scholar 

  32. D. Sournadurai, V.S. Sastry, Paul V. Thomas, R. Flemming, F. Jose, R. Rameshan, and S. Dash, Intermetallics 24, 89 (2012).

    Article  Google Scholar 

  33. K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  34. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  35. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Wien: Karlheinz Schwarz, Technische Universität, 2001) ISBN 3-9501031-1-2.

    Google Scholar 

  36. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  37. G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).

    Article  Google Scholar 

  38. X.T. Wang, Y.T. Cui, X.F. Liu, and G.D. Liu, J. Magn. Magn. Mater. 394, 50 (2015).

    Article  Google Scholar 

  39. G.D. Liu, X.F. Dai, S.Y. Yu, Z.Y. Zhu, J.L. Chen, G.H. Wu, H. Zhu, and J.Q. Xiao, Phys. Rev. B 74, 054435 (2006).

    Article  Google Scholar 

  40. M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, and B.M. Klein, Phys. Rev. B 41, 10311 (1990).

    Article  Google Scholar 

  41. S. Yousuf and D.C. Gupta, Indian J. Phys. 91, 33 (2017).

    Article  Google Scholar 

  42. R. Hill, Proc. Phys. Soc. Lond. 65, 909 (1953).

    Google Scholar 

  43. W. Voigt, Lehrbuch der Kristallphysik (Leipzig: Taubner, 1928).

    Google Scholar 

  44. A. Reuss and Z. Angew, Mater. Phys. 9, 49 (1929).

    Google Scholar 

  45. S. Yousuf and D.C. Gupta, Mater. Sci. Eng., B 221, 73 (2017).

    Article  Google Scholar 

  46. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  47. B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, and P.C. Schmidt, Intermetallics 11, 23 (2003).

    Article  Google Scholar 

  48. C. Zener, Elasticity and Anelasticity of Metals (Chicago: University of Chicago Press, 1948).

    Google Scholar 

  49. K. Benkaddour, A. Chahed, A. Amar, H. Rozale, A. Lakdja, O. Benhelal, and A. Sayede, J. Alloys Compd. 687, 211 (2016).

    Article  Google Scholar 

  50. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Philadelphia: Saunders College, 1976).

    Google Scholar 

  51. P.-L. Yan, J.-M. Zhang, B. Zhou, and X. Ke-Wei, J. Phys. D Appl. Phys. 49, 255002 (2016).

    Article  Google Scholar 

  52. K. Zberecki, R. Swirkowicz, M. Wierzbicki, and J. Barnas, Phys. Chem. Chem. Phys. 17, 1925 (2015).

    Article  Google Scholar 

  53. D.J. Singh, Phys. Rev. B Condens. Matter Mater. Phys. 81, 1 (2010).

    Google Scholar 

  54. S. Yousuf, S.A. Khandy, T.M. Bhat, and D.C. Gupta, AIP Conf. Proc. 1832, 110005 (2017). https://doi.org/10.1063/1.4980629.

    Article  Google Scholar 

  55. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  56. J. Yang, P. Qiu, R. Liu, L. Xi, S. Zheng, W. Zhang, L. Chen, and D.J. Singh, Phys. Rev. B 84, 235205 (2011).

    Article  Google Scholar 

  57. S. Yabuuchi, M. Okamoto, A. Nishide, Y. Kurosaki, and J. Hayakawa, Appl. Phys. Express 6, 025504 (2013).

    Article  Google Scholar 

  58. J. Barth, G.H. Fecher, B. Balke, T. Graf, A. Shkabko, A. Weidenkaff, P. Klaer, M. Kallmayer, H.J. Elmers, H. Yoshikawa, S. Ueda, K. Kobayashi, and C. Felser, Philos. Trans. R. Soc. A 369, 3588 (2011).

    Article  Google Scholar 

  59. T. Graf, G.H. Fecher, J. Barth, J. Winterlik, and C. Felser, J. Phys. D Appl. Phys. 42, 084003 (2009).

    Article  Google Scholar 

  60. S. Picozzi, A. Continenza, and A. Freeman, J. Phys. Rev. B 66, 094421 (2002).

    Article  Google Scholar 

  61. S. Yousuf and D.C. Gupta, J. Phys. Chem. Solids 108, 109 (2017).

    Article  Google Scholar 

  62. D. Wee, B. Kozinsky, B. Pavan, and M. Fornari, J. Electron. Mater. 41, 6 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh C. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousuf, S., Gupta, D.C. Chemical Potential Evaluation of Thermoelectric and Mechanical Properties of Zr2CoZ (Z = Si, Ge) Heusler Alloys. J. Electron. Mater. 47, 2468–2478 (2018). https://doi.org/10.1007/s11664-017-6034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6034-3

Keywords

Navigation