Skip to main content

Advertisement

Log in

Continuous Flow Low Gradient Magnetophoresis of Magnetic Nanoparticles: Separation Kinetic Modelling and Simulation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In recent years, magnetophoresis of magnetic nanoparticles (MNPs) has been emerged as one of the most appealing separation technologies in water treatment and biomedical applications. Magnetophoresis of MNPs can be further divided into two classes: high gradient magnetic separation (HGMS) and low gradient magnetic separation (LGMS). In the past decades, LGMS has been revealed to outperform HGMS in several aspects, such as simplicity, energy-saving and low cost. Therefore, in this work, we intend to extend the LGMS to continuous flow operation mode so that the wide implementation of this technology in the industry can be facilitated. Here, a mathematical model was developed to depict the kinetic of continuous flow LGMS (CF-LGMS) process by using poly(diallyldimethylammonium chloride) (PDDA)-coated MNPs with 64.4 nm core diameter and 107.4 nm hydrodynamic diameter (saturation magnetization = 71 Am2/kg) as the particle model system. By using this model, the effect of several critical design parameters on the separation efficiency was evaluated. According to our simulation result, it can be revealed that the separation efficiency of CF-LGMS is improved by performing the separation under low flowrate of MNP solution (~ 98.04% separation efficiency under low flow velocities of 5 and 10 mm/s) and high particle concentration (~ 98.04% separation efficiency under high particle concentration of 100, 500 and 1000 mg/L). Nevertheless, the magnetic field that is vertically symmetry will impose higher separation efficiency on the CF-LGMS, as compared to its asymmetry counterparts. Lastly, we performed a cost analysis on the batchwise (RM 22.19/h) as well as continuous flow magnetic separators (RM 37.47/h) and found that LGMS conducted under continuous flow mode is more economically friendly to be implemented in the real-time industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang, J., Shao, Y., Te Hsieh, C., Chen, Y.F., Su, T.C., Hsu, J.P., Juang, R.S.: Synthesis of magnetic iron oxide nanoparticles onto fluorinated carbon fabrics for contaminant removal and oil-water separation. Sep. Purif. Technol. 174, 312–319 (2017)

    Article  Google Scholar 

  2. Chen, K., He, J., Li, Y., Cai, X., Zhang, K., Liu, T., Hu, Y., Lin, D., Kong, L., Liu, J.: Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. Colloid Interface Sci. 494, 307–316 (2017)

    Article  ADS  Google Scholar 

  3. Agarwal, P., Gupta, R., Agarwal, N.: Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment. J. Nanotechnol. 2019, 1 (2019)

    Article  Google Scholar 

  4. Sangaiya, P., Jayaprakash, R.: A Review on Iron Oxide Nanoparticles and Their Biomedical Applications. J. Supercond. Nov. Magn. 31, 3397–3413 (2018)

    Article  Google Scholar 

  5. Devi, S.M., Nivetha, A., Prabha, I.: Superparamagnetic properties and significant applications of iron oxide nanoparticles for astonishing efficacy—a review. J. Supercond. Nov. Magn. 32, 127–144 (2019)

    Article  Google Scholar 

  6. Zborowski, M., Ostera, G.R., Moore, L.R., Milliron, S., Chalmers, J.J., Schechter, A.N.: Red Blood Cell Magnetophoresis. Biophys. J. 84, 2638–2645 (2003)

    Article  Google Scholar 

  7. Zborowski, M., Chalmers, J.J.: Magnetophoresis: Fundamentals and Applications. In: Webster, G.J. (ed.) Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–23. Wiley (2015)

  8. Le Roy, D., Dhungana, D., Ourry, L., Faivre, M., Ferrigno, R., Tamion, A., Dupuis, V., Salles, V., Deman, A.-L.: Anisotropic ferromagnetic polymer: a first step for their implementation in microfluidic systems. AIP Adv. 6, 56604 (2016)

    Article  Google Scholar 

  9. Ozel, F., Kockar, H., Karaagac, O.: Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size. J. Supercond. Nov. Magn. 28, 823–829 (2015)

    Article  Google Scholar 

  10. Moeser, G.D., Roach, K.A., Green, W.H., Hatton, T.A., Laibinis, P.E.: High-gradient magnetic separation of coated magnetic nanoparticles. AICHE J. 50, 2835–2848 (2004)

    Article  Google Scholar 

  11. Hatch, G.P., Stelter, R.E.: Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. J. Magn. Magn. Mater. 225, 262–276 (2001)

    Article  ADS  Google Scholar 

  12. Toh, P.Y., Yeap, S.P., Kong, L.P., Ng, B.W., Chan, D.J.C., Ahmad, A.L., Lim, J.K.: Magnetophoretic removal of microalgae from fishpond water: feasibility of high gradient and low gradient magnetic separation. Chem. Eng. J. 211-212, 22–30 (2012)

    Article  Google Scholar 

  13. Leong, S.S., Yeap, S.P., Lim, J.K.: Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients. Interface Focus. 6, 20160048 (2016)

  14. De Las Cuevas, G., Faraudo, J., Camacho, J.: Low-gradient magnetophoresis through field-induced reversible aggregation. J. Phys. Chem. C. 112, 945–950 (2008)

    Article  Google Scholar 

  15. Faraudo, J., Andreu, J.S., Camacho, J.: Understanding diluted dispersions of superparamagnetic particles under strong magnetic fields: a review of concepts, theory and simulations. Soft Matter. 9, 6654–6664 (2013)

    Article  ADS  Google Scholar 

  16. Andreu, J.S., Camacho, J., Faraudo, J., Benelmekki, M., Rebollo, C., Martínez, L.M.: Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 84, 1–8 (2011)

    Article  Google Scholar 

  17. Benelmekki, M., Montras, A., Martins, A.J., Coutinho, P.J.G., Martinez, L.M.: Magnetophoresis behaviour at low gradient magnetic field and size control of nickel single core nanobeads. J. Magn. Magn. Mater. 323, 1945–1949 (2011)

    Article  ADS  Google Scholar 

  18. Yavuz, C.T., Mayo, J.T., Yu, W.W., Prakash, A., Falkner, J.C., Yean, S., Cong, L., Shipley, H.J., Kan, A., Tomson, M., Natelson, D., Colvin, V.L.: Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals. Science. 314, 964–967 (2006)

    Article  Google Scholar 

  19. Andreu, J.S., Camacho, J., Faraudo, J.: Aggregation of superparamagnetic colloids in magnetic fields: the quest for the equilibrium state. Soft Matter. 7, 2336–2339 (2011)

    Article  ADS  Google Scholar 

  20. Andreu, J.S., Calero, C., Camacho, J., Faraudo, J.: On-the-fly coarse-graining methodology for the simulation of chain formation of superparamagnetic colloids in strong magnetic fields. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 85, 1–11 (2012)

    Article  Google Scholar 

  21. Faraudo, J., Andreu, J.S., Calero, C., Camacho, J.: Predicting the self-assembly of superparamagnetic colloids under magnetic fields. Adv. Funct. Mater. 26, 3837–3858 (2016)

    Article  Google Scholar 

  22. Yeap, S.P., Leong, S.S., Ahmad, A.L., Ooi, B.S., Lim, J.: On size fractionation of iron oxide nanoclusters by low magnetic field gradient. J. Phys. Chem. C. 118, 24042–24054 (2014)

    Article  Google Scholar 

  23. Leong, S.S., Ahmad, Z., Lim, J.K.: Magnetophoresis of superparamagnetic nanoparticles at low field gradient: hydrodynamic effect. Soft Matter. 11, 6968–6980 (2015)

    Article  ADS  Google Scholar 

  24. Lee, S.L., O’Connor, T.F., Yang, X., Cruz, C.N., Chatterjee, S., Madurawe, R.D., Moore, C.M.V., Yu, L.X., Woodcock, J.: Modernizing pharmaceutical manufacturing: from batch to continuous production. J. Pharm. Innov. 10, 191–199 (2015)

    Article  Google Scholar 

  25. Samad, T., McLaughlin, P., Lu, J.: System architecture for process automation: Review and trends. J. Process Control. 17, 191–201 (2007)

    Article  Google Scholar 

  26. Lim, J., Yeap, S.P., Low, S.C.: Challenges associated to magnetic separation of nanomaterials at low field gradient. Sep. Purif. Technol. 123, 171–174 (2014)

    Article  Google Scholar 

  27. Leong, S.S., Ahmad, Z., Camacho, J., Faraudo, J., Lim, J.K.: Kinetics of low field gradient magnetophoresis in the presence of magnetically induced convection. J. Phys. Chem. C. 121, 5389–5407 (2017)

    Article  Google Scholar 

  28. Khashan, S.A., Furlani, E.P.: Coupled particle-fluid transport and magnetic separation in microfluidic systems with passive magnetic functionality. J. Phys. D. Appl. Phys. 46, 125002 (2013)

  29. Khashan, S.A., Furlani, E.P.: Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 125, 311–318 (2014)

    Article  Google Scholar 

  30. Khashan, S.A., Furlani, E.P.: Effects of particle-fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid. Nanofluid. 12, 565–580 (2012)

    Article  Google Scholar 

  31. Lim, J.K., Chieh, D.C.J., Jalak, S.A., Toh, P.Y., Yasin, N.H.M., Ng, B.W., Ahmad, A.L.: Rapid magnetophoretic separation of microalgae. Small. 8, 1683–1692 (2012)

    Article  Google Scholar 

  32. Yuksel, C., Ankarali, S., Aslan Yuksel, N.: The use of neodymium magnets in healthcare and their effects on health. North. Clin. İstanbul. 5, 268–273 (2018)

    Google Scholar 

  33. Ellingson, S.W.: Electromagnetics, vol. 1. VT Publishing, Blacksburg (2018)

    Google Scholar 

  34. Wang, X., Yue, H., Liu, G., Zhao, Z.: The application of COMSOL multiphysics in direct current method forward modeling. Procedia Earth Planet. Sci. 3, 266–272 (2011)

    Article  ADS  Google Scholar 

  35. Sun, J., Shi, Z., Chen, S., Jia, S.: Experimental and numerical analysis of the magnetophoresis of magnetic nanoparticles under the influence of cylindrical permanent magnet. J. Magn. Magn. Mater. 475, 703–714 (2019)

    Article  ADS  Google Scholar 

  36. Schaller, V., Kräling, U., Rusu, C., Petersson, K., Wipenmyr, J., Krozer, A., Wahnström, G., Sanz-Velasco, A., Enoksson, P., Johansson, C.: Motion of nanometer sized magnetic particles in a magnetic field gradient. J. Appl. Phys. 104, 093918 (2008)

  37. Furlani, E.P., Sahoo, Y.: Analytical model for the magnetic field and force in a magnetophoretic microsystem. J. Phys. D. Appl. Phys. 39, 1724–1732 (2006)

    Article  ADS  Google Scholar 

  38. Cabo-Calvet, E., Ortiz-Bolsico, C., Baeza-Baeza, J.J., García-Alvarez-Coque, M.: Description of the retention and peak profile for chromolith columns in isocratic and gradient elution using mobile phase composition and flow rate as factors. Chromatography. 1, 194–210 (2014)

    Article  Google Scholar 

  39. Helseth, L.E., Skodvin, T.: Optical monitoring of low-field magnetophoretic separation of particles. Meas. Sci. Technol. 20, 095202 (2009)

  40. Khashan, S.A., Elnajjar, E., Haik, Y.: CFD simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater. 323, 2960–2967 (2011)

    Article  ADS  Google Scholar 

  41. Khashan, S.A., Alazzam, A., Furlani, E.P.: Computational analysis of enhanced magnetic bioseparation in microfluidic systems with flow-invasive magnetic elements. Sci. Rep. 4, 5299 (2014)

    Article  ADS  Google Scholar 

  42. Ursu, A.V., Furtuna, D., Requia, L., Larafa, S., de Baynast, H., Michaud, P., Djelveh, G., Delattre, C.: Comparison study between batch and continuous processes to obtain chitosan-based high porous biomaterial for biological applications. Int. J. Polym. Sci. 2019, 2603757 (2019)

    Article  Google Scholar 

  43. Narvaez, A., Chadwick, D., Kershenbaum, L.: Small-medium scale polygeneration systems: methanol and power production. Appl. Energy. 113, 1109–1117 (2014)

    Article  Google Scholar 

  44. Kingsley, R.J., Kneale, M., Schwartz, E.: Commissioning of medium-scale chemical process plant. Proc. Inst. Mech. Eng. 183, 205–218 (1968)

    Article  Google Scholar 

  45. Seider, W.D., Lewin, D.R., Seader, J.D., Widagdo, S., Gani, R., Ng, K.M.: Product and process design principles: synthesis, analysis and evaluation. Wiley (2016)

  46. Indeed.com: Production Operator Salaries in Malaysia. https://malaysia.indeed.com/salaries/production-operator-Salaries (2020). Accessed 10 September 2020

  47. Toh, P.Y., Chai, C.C., Ahmad, A.L., Chan, D.J.C., Lim, J.K.: Effect of the colloidal stability of SF-IONPs on the performance of magnetophoretic separation of microalgae. AIP Conf. Proc. 1828, 020004 (2017)

  48. Flygt: H & EQ centrifugal pumps - high efficiency for cost-effective pumping. http://www.swedepump.by/files/1587870.pdf (2020). Accessed 29 October 2020

  49. Alibaba: High Performance super strong permanent N35 N40 N50 N52l neodymium magnets price. https://www.alibaba.com/product-detail/High-Performance-Super-Strong-Permanent-N35_60710328939.html?spm=a2700.galleryofferlist.0.0.233132f3BTTQ9z (2020) Accessed 10 September 2020

  50. Opalic, M., Kljajin, M., Sebastijanovic, S.: Determining useful life of reactor pressure vessels. Transaction. D03/2, 1–6 (2007)

Download references

Funding

This project is financially supported by UTAR Research Fund (UTARRF project number: IPSR/RMC/UTARRF/2019-C2/L04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sim Siong Leong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1002 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, P.H., Tan, Y.W., Teoh, Y.P. et al. Continuous Flow Low Gradient Magnetophoresis of Magnetic Nanoparticles: Separation Kinetic Modelling and Simulation. J Supercond Nov Magn 34, 2151–2165 (2021). https://doi.org/10.1007/s10948-021-05893-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05893-z

Keywords

Navigation