Skip to main content
Log in

Investigations on the Structural and Electrical Properties of Sm3+-Doped Nickel Ferrite–Based Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Compositions of ferrimagnetic NiSmxFe2−xO4 (0.00 ≤ x ≤ 0.25) ceramics were synthesized by the self-propagating sol-gel autocombustion method. Structural information was found using X-ray diffraction. It reveals that all the ceramics possess cubic symmetry of spinel ferrite with a small amount of orthoferrite phase SmFeO3, which is a ferroelectric material. The amount of phases and lattice parameter were determined by the Rietveld refinement method using the Fullprof suite software. As doping concentration increases, the secondary phase fraction of the ferroelectric SmFeO3 also increases. Due to the increase of the ferroelectric phase in NiFe2O4, the electrical properties of doped samples also modify. To know this modification, the electrical properties of these samples have been investigated. The room temperature dielectric and complex impedance analysis have been measured in the frequency range of 1–106 Hz. The dielectric behavior for x = 0.05 concentration (NiSm0.05Fe1.95O4) has a maximum dielectric constant value with a minimal loss tangent. Cole-Cole plot brings out the role of grain and grain boundaries in the bulk. Using impedance study, the resistance and capacitance of grain and grain boundaries have been determined. The ferroelectric behavior has been performed through the P-E (polarization versus electric field) and J-E (leakage current versus electric field) curves at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Almessiere, M.A., Slimani, Y., Korkmaz, A.D., Taskhandi, N., Sertkol, M., Baykal, A., Shirsath, S.E., Ercan, Ozçelik, B.: Sonochemical synthesis of Eu3+ substituted CoFe2O4 nanoparticles and their structural, optical and magnetic properties. Ultrason. Sonochem. 58, 104621 (2019). https://doi.org/10.1016/j.ultsonch.2019.104621

    Article  Google Scholar 

  2. Albetran, H., Slimani, Y., Almessiere, M.A., Alahmari, F., Shirsath, S.E., Akhtar, S., Low, I.M., Baykal, A., Ercan, I.: Synthesis, characterization and magnetic investigation of Er-substituted electrospun NiFe2O4 nanofibers. Phys. Scr. 95, 075801 (2020). https://doi.org/10.1088/1402-4896/ab8b7d

    Article  ADS  Google Scholar 

  3. Korkmaz, A.D., Güner, S., Slimani, Y., Gungunes, H., Amir, M., Manikandan, A., Baykal, A.: Microstructural, optical, and magnetic properties of vanadium-substituted nickel spinel nanoferrites. J. Supercond. Nov. Magn. 32, 1057 (2019). https://doi.org/10.1007/s10948-018-4793-6

    Article  Google Scholar 

  4. Slimani, Y., Almessiere, M.A., Korkmaz, A.D., Guner, S., Güngüneş, H., Sertkol, M., Manikandan, A., Yildiz, A., Akhtar, S., Shirsath, S.E., Baykal, A.: Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nanospinel ferrites: ultrasonic synthesis and physical properties. Ultrason. Sonochem. 59, 104757 (2019). https://doi.org/10.1016/j.ultsonch.2019.104757

    Article  Google Scholar 

  5. Sutka, A., Mezinskis, G.: Sol-Gel Auto-Combustion Synthesis of Spinel-Type Ferrite Nanomaterials. 6, 128–141 (2012). https://doi.org/10.1007/s11706-012-0167-3

  6. Akhtar, S., Rehman, S., Almessiere, M.A., Khan, F.A., Slimani, Y., Baykal, A.: Synthesis of Mn0.5 Zn0.5 Smx Eux Fe1.8−2x O4 nanoparticles via the hydrothermal approach induced anti-cancer and anti-bacterial activities. Nanomaterials. 9, (2019). https://doi.org/10.3390/nano9111635

  7. Sartaj Aziz, H., Ali Khan, R., Shah, F., Ismail, B., Nisar, J., Mujtaba Shah, S., Rahim, A., Rahman Khan, A.: Improved electrical, dielectric and magnetic properties of Al-Sm co-doped NiFe 2 O 4 spinel ferrites nanoparticles. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 243, 47 (2019). https://doi.org/10.1016/j.mseb.2019.03.021

    Article  Google Scholar 

  8. Ghosh, M.P., Mukherjee, S.: Disordered surface spins induced large exchange anisotropy in single-phase Sm3+ ions substituted nickel ferrite nanoparticles. J. Magn. Magn. Mater. 489, 165320 (2019). https://doi.org/10.1016/j.jmmm.2019.165320

    Article  Google Scholar 

  9. Almessiere, M.A., Slimani, Y., Güngüneş, H., Ali, S., Manikandan, A., Ercan, I., Baykal, A., Trukhanov, A.V.: Magnetic attributes of NiFe2O4 nanoparticles: influence of dysprosium ions (Dy3+) substitution. Nanomaterials. 9, (2019). https://doi.org/10.3390/nano9060820

  10. Ahmad, T., Lone, I.H., Ansari, S.G., Ahmed, J., Ahamad, T., Alshehri, S.M.: Multifunctional properties and applications of yttrium ferrite nanoparticles prepared by citrate precursor route. Mater. Des. 126, 331 (2017). https://doi.org/10.1016/j.matdes.2017.04.034

    Article  Google Scholar 

  11. Van Aken, B.B., Palstra, T.T.M., Filippetti, A., Spaldin, N.A.: The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164 (2004). https://doi.org/10.1038/nmat1080

    Article  ADS  Google Scholar 

  12. Mishra, A., Khan, M., Jarabana, K.M., Bisen, S.: Structural, optical and EXAFS studies of nickel substituted copper ferrites Nano-particle by sol-gel auto combustion method. J. Phys. Conf. Ser. 755, 012044 (2016). http://iopscience.iop.org/1742-6596/755/1/012044

  13. Khan, M., Mishra, A., Shukla, J., Sharma, P.: Structural, Optical and Electrical Properties of BaTiO3 -NiFe2O4 Based Multifunctional Composites. AIP Conference Proceedings. 2142 (2019). https://doi.org/10.1063/1.5122593

  14. Khan, M., Mishra, A., Shukla, J., Bisen, S., Sharma, P.: Structural and Optical Properties of (1-x)BaTiO3-xNiFe2O4 Based Nano-Composites. AIP Conference Proceedings. 2115 (2019). https://doi.org/10.1063/1.5112946

  15. Prodip, K.M., Mohammad, A.H., Mohammed, N.I.K., Shibendra, S.S.: Structural, magnetic and transport properties of samarium (Sm) doped Cu-Zn ferrites. Int. J. Phys. Sci. 14, 21–29 (2019). https://doi.org/10.5897/ijps2018.4746

    Article  Google Scholar 

  16. Rahman, M.T., Ramana, C.V.: Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics. J. Appl. Phys. 116, 164108 (2014). https://doi.org/10.1063/1.4896945

    Article  ADS  Google Scholar 

  17. Joshi, S., Kumar, M., Chhoker, S., Srivastava, G., Jewariya, M., Singh, V.N.: Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014). https://doi.org/10.1016/j.molstruc.2014.07.048

    Article  ADS  Google Scholar 

  18. Dixit, G., Singh, J.P., Chen, C.L., Dong, C.L., Srivastava, R.C., Agrawal, H.M., Pong, W.F., Asokan, K.: Study of structural, morphological and electrical properties of Ce doped NiFe2O4 nanoparticles and their electronic structure investigation. J. Alloys Compd. 581, 178–185 (2013). https://doi.org/10.1016/j.jallcom.2013.07.047

    Article  Google Scholar 

  19. Dean, J.A.: Lange’s handbook of chemistry. Mater. Manuf. Process. 5, 687 (1990). https://doi.org/10.1080/10426919008953291

    Article  Google Scholar 

  20. Hassanzadeh-Tabrizi, S.A., Behbahanian, S., Amighian, J.: Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder. J. Magn. Magn. Mater. 410, 242 (2016). https://doi.org/10.1016/j.jmmm.2016.03.015

    Article  ADS  Google Scholar 

  21. Murugesan, C., Chandrasekaran, G.: Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714 (2015). https://doi.org/10.1039/c5ra14351a

    Article  ADS  Google Scholar 

  22. Joshi, S., Kumar, M., Pandey, H., Singh, M., Pal, P.: Structural, magnetic and dielectric properties of Gd3+ substituted NiFe2O4 nanoparticles. J. Alloys Compd. 768, 287–297 (2018). https://doi.org/10.1016/j.jallcom.2018.07.250

    Article  Google Scholar 

  23. Sharma, N.D., Verma, M.K., Choudhary, N., Sharma, S., Singh, D.: Enhanced coercivity of NiFe1–x Dyx CrO4 ferrites synthesised by glycine-nitrate combustion method. Mater. Sci. Technol. 35, 448–455 (2019). https://doi.org/10.1080/02670836.2019.1569836

    Article  Google Scholar 

  24. Pervaiz, E., Gul, I.H.: Structural, electrical and magnetic studies of Gd 3+ doped cobalt ferrite. Nanoparticles. J. Curr. Eng. and Technol. 4, 377–387 (2012). http://inpressco.com/category/ijcet

  25. Sangwan, K.M., Ahlawat, N., Rani, S., Rani, S., Kundu, R.S.: Influence of Mn doping on electrical conductivity of lead free BaZrTiO3 perovskite ceramic. Ceram. Int. 44, 10315–10321 (2018). https://doi.org/10.1016/j.ceramint.2018.03.039

    Article  Google Scholar 

  26. Yuvaraj, S., Layek, S., Vidyavathy, S.M., Yuvaraj, S., Meyrick, D., Selvan, R.K.: Electrical and magnetic properties of spherical SmFeO3 synthesized by aspartic acid assisted combustion method. Mater. Res. Bull. 72, 77 (2015). https://doi.org/10.1016/j.materresbull.2015.07.013

    Article  Google Scholar 

  27. Bisen, S., Khan, M., Mishra, A.: Tailoring effect of large polaron hopping in the conduction mechanism of Ca-modified BaTiO3 system. J. Mater. Sci. Mater. Electron. 31, 9212 (2020). https://doi.org/10.1007/s10854-020-03452-1

    Article  Google Scholar 

  28. Qindeel, R., Alonizan, N.H.: Structural, dielectric and magnetic properties of cobalt based spinel ferrites. Curr. Appl. Phys. 18, 519–525 (2018). https://doi.org/10.1016/j.cap.2018.03.004

    Article  ADS  Google Scholar 

  29. Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  ADS  Google Scholar 

  30. Bhargavi, G.N., Khare, A., Badapanda, T., Anwar, M.S., Brahme, N.: Electrical characterizations of BaZr0.05Ti0.95O3 perovskite ceramic by impedance spectroscopy, electric modulus and conductivity. J. Mater. Sci. Mater. Electron. 28, 16956–16964 (2017). https://doi.org/10.1007/s10854-017-7617-8

    Article  Google Scholar 

  31. Tiwari, B., Choudhary, R.N.P.: Effect of Mn-substitution on structural and dielectric properties of Pb(Zr0.65-xMnxTi0.35)O3 ceramics. Solid State Sci. 11, 219 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.04.023

    Article  ADS  Google Scholar 

  32. Naeem, A., Mahmood, A., Iqbal, Y., Ullah, A., Mahmood, T., Humayun, M.: Dielectric and impedance spectroscopic studies on (Ba0.5Sr0.5)Mnx(Ti0.95Fe0.05)1-xO3 ceramics synthesized by using sol-gel method. J. Alloys Compd. 645, 290–296 (2015). https://doi.org/10.1016/j.jallcom.2015.05.114

    Article  Google Scholar 

  33. Choudhary, P., Saxena, P., Yadav, A., Sinha, A.K., Rai, V.N., Varshney, M.D., Mishra, A.: Weak ferroelectricity and leakage current behavior of multiferroic CoCr2O4 nanomaterials. J. Supercond. Nov. Magn. 32, 2639 (2019). https://doi.org/10.1007/s10948-019-5001-z

    Article  Google Scholar 

  34. Mao, W., Yao, Q., Fan, Y., Wang, Y., Wang, X., Pu, Y., Li, X.: Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping. J. Alloys Compd. 784, 117 (2019). https://doi.org/10.1016/j.jallcom.2018.12.381

    Article  Google Scholar 

  35. Kalita, P.K., Sarma, B.K., Das, H.L.: Space charge limited conduction in CdSe thin films. Bull. Mater. Sci. 26, 613 (2003). https://doi.org/10.1007/bf02704325

    Article  Google Scholar 

  36. Ye, C., Wu, J., He, G., Zhang, J., Deng, T., He, P., Wang, H.: Physical mechanism and performance factors of metal oxide based resistive switching memory: a review. J. Mater. Sci. Technol. 32, 1 (2016). https://doi.org/10.1016/j.jmst.2015.10.018

    Article  Google Scholar 

  37. Kwan, C.P., Street, M., Mahmood, A., Echtenkamp, W., Randle, M., He, K., Nathawat, J., Arabchigavkani, N., Barut, B., Yin, S., Dixit, R., Singisetti, U., Binek, C., Bird, J.P.: Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates. AIP Adv. 9, (2019). https://doi.org/10.1063/1.5087832

  38. Chiu, F.C.: A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/204/58168

  39. Zhou, H.F., Hou, Z.L., Kong, L.B., Jin, H.B., Cao, M.S., Qi, X.: Enhanced magnetization and improved leakage in Er-doped BiFeO3 nanoparticles. Phys. Status Solidi Appl. Mater. Sci. 210, 809 (2013). https://doi.org/10.1002/pssa.201228693

    Article  ADS  Google Scholar 

Download references

Acknowledgments

UGC-DAE-CSR, as an institute, is acknowledged for providing some of the experimental facilities for sample characterization. The authors sincerely thank Dr. M. Gupta of UGC-DAE-CSR, Indore, India, for providing the XRD facility. Thanks to Dr. V. R. Reddy of UGC-DAE-CSR, Indore, India, for providing P-E and J-E measurements, and Mr. Bhardwaj of UGC-DAE-CSR, Indore, India, is gratefully acknowledged for dielectric measurements and fruitful discussions.

Funding

Authors acknowledge the Ministry of Minority Affairs through UGC, Government of India, for providing financial support through Maulana Azad National Fellowship Scheme F1-17.1/2016-17/MANF-2015-17-MAD-55974 /(SAIII/Website).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehjabeen Khan.

Ethics declarations

Competing Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Bisen, S., Shukla, J. et al. Investigations on the Structural and Electrical Properties of Sm3+-Doped Nickel Ferrite–Based Ceramics. J Supercond Nov Magn 34, 763–780 (2021). https://doi.org/10.1007/s10948-020-05754-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05754-1

Keywords

Navigation