Skip to main content
Log in

A Facile Route to Synthesis of Ferromagnetic and Antiferromagnetic Phases of Iron Oxide Nanoparticles by Controlled Heat Treatment of Ferritin

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles of ferromagnetic and antiferromagnetic phases were synthesized from controlled heat treatment of dry ferritin powder in a bottom-up approach. Heat treatment paves the way for synthesis of Fe2O3 solid phase from iron molecular complexes stored in the cavity of ferritin; the strong increase (~ 150 times) in saturation magnetization is a sign of the presence of ferromagnetic exchange coupling which exists only in solid phase. In this experimental study, vibrating sample magnetometer (VSM) was used to study magnetic induction. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed for analysis of structure and morphology of the samples. Differential scanning calorimetry (DSC) was used to search for indicators of structural phase transformation through scanning of temperature. The nanoparticle size with highly narrow distribution (mean size ~ 6 nm) was observed by SEM for sample annealed at 430 °C. As indicated by XRD measurements, the majority phase of Fe2O3 nanoparticles was amorphous up to 500 °C, whereas DSC demarcates the crystalline phase transition temperature at 545 °C. The annealing temperature range from 400 to 500 °C was found to be suitable for growing ferromagnetic nanoparticles endowed with high saturation magnetization and low coercivity. At higher range of annealing temperature (500–700 °C), XRD confirms the presence of α-Fe2O3 (haematite) phase which is an antiferromagnetic crystalline system with weak magnetization. A systematic decline of magnetization on increasing the annealing temperature beyond 500 °C was attributed to finite size effects and increased purity of antiferromagnetic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacHala, L., Tuček, J., Zbořil, R.: Polymorphous transformations of nanometric iron(III) oxide: a review. Chem. Mater. 23, 3255–3272 (2011). https://doi.org/10.1021/cm200397g

    Article  Google Scholar 

  2. Silveyra, M.J., Ferrara, E., Huber, D.I., Monson, T.C.: Sustainable and electrified world. Science (80-). 362, 1–9 (2018). https://doi.org/10.1126/science.aao0195

    Article  Google Scholar 

  3. Behrens, S., Appel, I.: ScienceDirect Magnetic nanocomposites. Curr. Opin. Biotechnol. 39, 89–96 (2016). https://doi.org/10.1016/j.copbio.2016.02.005

    Article  Google Scholar 

  4. Lee, H., Shin, T.H., Cheon, J., Weissleder, R.: Recent developments in magnetic diagnostic systems. Chem. Rev. 115, 10690–10724 (2015). https://doi.org/10.1021/cr500698d

    Article  Google Scholar 

  5. Tietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R.P., Janko, C., Pöttler, M., Dürr, S., Alexiou, C.: Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun. 468, 463–470 (2015). https://doi.org/10.1016/j.bbrc.2015.08.022

    Article  Google Scholar 

  6. Hauser, A.K., Wydra, R.J., Stocke, N.A., Anderson, K.W., Hilt, J.Z.: Magnetic nanoparticles and nanocomposites for remote controlled therapies. J. Control. Release. 219, 76–94 (2015). https://doi.org/10.1016/j.jconrel.2015.09.039

    Article  Google Scholar 

  7. Odenbach, S.: Ferrofluids and their applications. MRS Bull. 38, 921–924 (2013). https://doi.org/10.1557/mrs.2013.232

    Article  Google Scholar 

  8. Gawande, M.B., Monga, Y., Zboril, R., Sharma, R.K.: Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev. 288, 118–143 (2015). https://doi.org/10.1016/j.ccr.2015.01.001

    Article  Google Scholar 

  9. Wen, T., Krishnan, K.M.: Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications. J. Phys. D. Appl. Phys. 44, 1–24 (2011). https://doi.org/10.1088/0022-3727/44/39/393001

    Article  Google Scholar 

  10. Viswanathan, V., Laha, T., Balani, K., Agarwal, A., Seal, S.: Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng. R. Rep. 54, 121–285 (2006). https://doi.org/10.1016/j.mser.2006.11.002

    Article  Google Scholar 

  11. Zeng, H., Li, J., Wang, Z.L., Liu, J.P., Sun, S.: Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 4, 187–190 (2004). https://doi.org/10.1021/nl035004r

    Article  ADS  Google Scholar 

  12. Icten, O., Hosmane, N.S., Kose, D.A., Zumreoglu-Karan, B.: Magnetic nanocomposites of boron and vitamin C. New J. Chem. 41, 3646–3652 (2017). https://doi.org/10.1039/c6nj03894h

    Article  Google Scholar 

  13. Lu, Y., Yin, Y., Mayers, B.T., Xia, Y.: Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2, 183–186 (2002). https://doi.org/10.1021/nl015681q

    Article  ADS  Google Scholar 

  14. Cao, D., Li, H., Pan, L., Li, J., Wang, X., Jing, P., Cheng, X., Wang, W., Wang, J., Liu, Q.: High saturation magnetization of γ 3-Fe 2 O 3 nano-particles by a facile one-step synthesis approach. Sci. Rep. 6, 1–9 (2016). https://doi.org/10.1038/srep32360

    Article  Google Scholar 

  15. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26, 3995–4021 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  16. Ohno, K., Mori, C., Akashi, T., Yoshida, S., Tago, Y., Tsujii, Y., Tabata, Y.: Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization. Biomacromolecules. 14, 3453–3462 (2013). https://doi.org/10.1021/bm400770n

    Article  Google Scholar 

  17. Conde, J., Doria, G., Baptista, P.: Noble metal nanoparticles applications in cancer. J. Drug Deliv. 2012, 1–12 (2012). https://doi.org/10.1155/2012/751075

    Article  Google Scholar 

  18. Kumar, P., Rawat, N., Hang, D.R., Lee, H.N., Kumar, R.: Controlling band gap and refractive index in dopant-free α-Fe2O3 films. Electron. Mater. Lett. 11, 13–23 (2015). https://doi.org/10.1007/s13391-014-4002-0

    Article  ADS  Google Scholar 

  19. Kumar, P., Kumar, R., Lee, H.N.: Magnetic field induced one-dimensional nano/micro structures growth on the surface of iron oxide thin film. Thin Solid Films. 592, 155–161 (2015). https://doi.org/10.1016/j.tsf.2015.08.047

    Article  ADS  Google Scholar 

  20. Patil, P.R., Krishnamurthy, V.N., Joshi, S.S.: Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide. Propellants, Explos. Pyrotech. 31, 442–446 (2006). https://doi.org/10.1002/prep.200600059

    Article  Google Scholar 

  21. MacHala, L., Zboril, R., Gedanken, A.: Amorphous iron (III) oxide-a review. J. Phys. Chem. B. 111, 4003–4018 (2007). https://doi.org/10.1021/jp064992s

  22. Jungwirth, T., Marti, X., Wadley, P., Wunderlich, J.: Antiferromegnetic Spintronics. Nat. Nanotechnol. 11, 231–241 (2016). https://doi.org/10.1038/nnano.2016.18

  23. Bhowmik, R.N., Sarvanan, A.: Surface magnetism, Morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (hematite) nanograins. J. Appl. Phys. 107, 053916–1–10 (2010). https://doi.org/10.1063/1.3327433

  24. Zeng, Q., Reuther, R., Oxsher, J., Wang, Q.: Characterization of horse spleen apoferritin reactive lysines by MALDI-TOF mass spectrometry combined with enzymatic digestion. Bioorg. Chem. 36, 255–260 (2008). https://doi.org/10.1016/j.bioorg.2008.06.001

    Article  Google Scholar 

  25. He, D., Marles-Wright, J.: Ferritin family proteins and their use in bionanotechnology. New Biotechnol. 32, 651–657 (2015). https://doi.org/10.1016/j.nbt.2014.12.006

    Article  Google Scholar 

  26. Kim, J.W., Choi, S.H., Lillehei, P.T., Chu, S.H., King, G.C., Watt, G.D.: Electrochemically controlled reconstitution of immobilized ferritins for bioelectronic applications. J. Electroanal. Chem. 601, 8–16 (2007). https://doi.org/10.1016/j.jelechem.2006.10.018

    Article  Google Scholar 

  27. Park, C.W., Park, H.J., Kim, J.H., Won, K., Yoon, H.H.: Immobilization and characterization of ferritin on gold electrode. Ultramicroscopy. 109, 1001–1005 (2009). https://doi.org/10.1016/j.ultramic.2009.03.002

    Article  Google Scholar 

  28. Jutz, G., Van Rijn, P., Santos Miranda, B., Böker, A.: Ferritin: a versatile building block for bionanotechnology. Chem. Rev. 115, 1653–1701 (2015). https://doi.org/10.1021/cr400011b

    Article  Google Scholar 

  29. Volatron, J., Carn, F., Kolosnjaj-Tabi, J., Javed, Y., Vuong, Q.L., Gossuin, Y., Ménager, C., Luciani, N., Charron, G., Hémadi, M., Alloyeau, D., Gazeau, F.: Ferritin protein regulates the degradation of iron oxide nanoparticles. Small. 13, 1–13 (2017). https://doi.org/10.1002/smll.201602030

    Article  Google Scholar 

  30. Chasteen, N.D., Harrison, P.M.: Mineralization in ferritin- an efficient means of iron storage. J. Struct. Biol. 126, 182–194 (1999). https://doi.org/10.1006/jsbi.1999.4118

  31. Qu, X., Kobayashi, N., Komatsu, T.: Solid nanotubes comprising α-Fe2O3 nanoparticles prepared from ferritin protein. ACS Nano. 4, 1732–1738 (2010). https://doi.org/10.1021/nn901879d

    Article  Google Scholar 

  32. Singh, A., Mukherjee, M.: Analysis of polypeptide inter-chain entanglements using swelling dynamics of a spin coated protein layer. Thin Solid Films. 691(1–6), 137605 (2019). https://doi.org/10.1016/j.tsf.2019.137605

  33. Singh, A., Konovalov, O., Novak, J., Vorobiev, A.: The sequential growth mechanism of a protein monolayer at the air-water interface. Soft Matter. 6, 3826–3831 (2010). https://doi.org/10.1039/b925365c

    Article  ADS  Google Scholar 

  34. Singh, A., Konovalov, O.: Measuring elastic properties of a protein monolayer at water surface by lateral compression. Soft Matter. 9, 2845–2851 (2013). https://doi.org/10.1039/c2sm26410b

    Article  ADS  Google Scholar 

  35. Bean, C.P., Livingston, J.D.: Superparamagnetism. J. Appl. Phys. 30, S120–S129 (1959). https://doi.org/10.1063/1.2185850

    Article  ADS  Google Scholar 

  36. Kittel, C.: Introduction to Solid State Physics. John Wiley & Sons, Delhi (1999)

    MATH  Google Scholar 

  37. García-Prieto, A., Alonso, J., Muñoz, D., Marcano, L., Abad Díaz De Cerio, A., Fernández De Luis, R., Orue, I., Mathon, O., Muela, A., Fdez-Gubieda, M.L.: On the mineral core of ferritin-like proteins: structural and magnetic characterization. Nanoscale. 8, 1088–1099 (2016). https://doi.org/10.1039/c5nr04446d

    Article  ADS  Google Scholar 

  38. St. Pierre, T.G., Chan, P., Bauchspiess, K.R., Webb, J., Betteridge, S., Walton, S., Dickson, D.P.E.: Synthesis, structure and magnetic properties of ferritin cores with varying composition and degrees of structural order: models for iron oxide deposits in iron-overload diseases. Coord. Chem. Rev. 151, 125–143 (1996). https://doi.org/10.1016/s0010-8545(96)90201-5

    Article  Google Scholar 

  39. Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  ADS  MATH  Google Scholar 

  40. Descamps, M., Dudognon, E.: Crystallization from the amorphous state: nucleation-growth, decoupling, polymorphism, the role of interfaces. J. Pharm. Sci. 103, 2615–2628 (2014). https://doi.org/10.1002/jps.24016

  41. Russo, C.J., Passmore, L.A.: Electron microscopy, ultrastable gold substrates for electron cryomicroscopy. Science (80-). 346, 1377–1380 (2014). https://doi.org/10.1126/science.1259530

  42. Coey, J.M.D.: Magnetism in amorphous solids. Physics of solids and liquids. Springer, Boston, MA (1985). https://doi.org/10.1007/978-1-4757-9156-3_13

  43. Frandsen, C., Mørup, S.: Spin rotation in α-Fe2O3 nanoparticles by interparticle interactions. Phys. Rev. Lett. 94(1–4), 027202 (2005). https://doi.org/10.1103/PhysRevLett.94.027202

  44. Kodama, R.H., Berkowitz, A.E., McNiff, E.J.J., Foner, S.: Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394–397 (1996). https://doi.org/10.1103/PhysRevLett.77.394

  45. Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A.: Synthesis, characterization, applications and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016). https://doi.org/10.2147/NSA.S99986

  46. Akbarzadeh, A., Samiei, M., Davaran, S.: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 1–13 (2012). https://doi.org/10.1186/1556-276X-7-144

    Article  Google Scholar 

Download references

Acknowledgements

SK thankfully acknowledges the University Grants Commission for National Fellowship scheme for SC (erstwhile–RGNF, Lett. No. F1-17.1/2016-17/RGNF-2015-17-SC-HIM-18502/(SA-III/Website)) for the financial support as fellowship towards pursuance of Ph.D. We acknowledge XRD facility established under DST-SAIF at the Panjab University. We acknowledge the DSC facility under DST-CURIE grant (SR/CURIE-PHASE-III/01/2015 (G)) at the Banasthali Vidyapith (DSC 204 F1 Phoenix, NETZSCH) and IIT Mandi for SEM facility (JFEI, Nova Nano SEM-450). Authors are thankful to Varsha for conducting measurements at the Banasthali Vidyapith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjeet Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Thakur, A., Gupta, S.K. et al. A Facile Route to Synthesis of Ferromagnetic and Antiferromagnetic Phases of Iron Oxide Nanoparticles by Controlled Heat Treatment of Ferritin. J Supercond Nov Magn 33, 3841–3852 (2020). https://doi.org/10.1007/s10948-020-05649-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05649-1

Keywords

Navigation