Skip to main content
Log in

Magnetic Ordering and Enhancement of Magnetization in Zinc-Substituted Copper Ferrite Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

ZnxCu1-xFe2O4 (0.05 ≤ x ≤ 0.85) nanoparticles were synthesized by sol-gel method and were annealed at 500 and 900 °C in air for 3 h. Characterization techniques like XRD, Raman spectroscopy, and vibrating sample magnetometer were used to investigate phase, cation distribution, and magnetic properties. XRD studies showed that all the as-prepared samples are of cubic spinel phase. Tetragonal phase was observed in the samples with x < 0.15 after annealing, whereas all other samples retained cubic phase. Raman spectroscopy showed increase of Zn2+ ions in the tetrahedral site with the increase in Zn2+ concentration in the nanoparticle samples. Cation distribution and magnetic ordering enhanced the magnetization value with increasing x value, and a maximum was observed in the as-prepared and annealed samples. The coercivity decreased with the increase in Zn2+ concentration. The highest magnetization value of 110 emu/g with coercivity of 25 Oe was observed in the present study at 60 K for the sample annealed at 900 °C with x = 0.5. Law of approach to saturation method was adopted to study the magnetic ordering in the nanoparticle samples. The blocking temperature decreased with increase in Zn2+ concentration and annealing temperature. Cation distribution associated magnetic ordering and anisotropy variation with the increasing Zn2+ concentration explains the observed magnetic behavior in these nanoparticle samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sugimoto, M.: The past, present, and future of ferrites. J. Am. Ceram. Soc. 82, 269–280 (1999). https://doi.org/10.1111/j.1551-2916.1999.tb20058.x

    Article  Google Scholar 

  2. Bate, G.: Magnetic recording materials since 1975. J. Magn. Magn. Mater. 100, 413–424 (1991). https://doi.org/10.1016/0304-8853(91)90831-T

    Article  ADS  Google Scholar 

  3. Shylesh, S., Schünemann, V., Thiel, W.R.: Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 49, 3428–3459 (2010). https://doi.org/10.1002/anie.200905684

    Article  Google Scholar 

  4. Veiseh, O., Gunn, J.W., Zhang, M.: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62, 284–304 (2010). https://doi.org/10.1016/j.addr.2009.11.002

    Article  Google Scholar 

  5. Lee, J.-H., Huh, Y.-M., Jun, Y., Seo, J., Jang, J., Song, H.-T., Kim, S., Cho, E.-J., Yoon, H.-G., Suh, J.-S., Cheon, J.: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99 (2007). https://doi.org/10.1038/nm1467

    Article  Google Scholar 

  6. Lee, J.H., Jang, J.T., Choi, J.S., Moon, S.H., Noh, S.H., Kim, J.W., Kim, J.G., Kim, I.S., Park, K.I., Cheon, J.: Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418–422 (2011). https://doi.org/10.1038/nnano.2011.95

    Article  ADS  Google Scholar 

  7. Chen, R., Christiansen, M.G., Anikeeva, P.: Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano. 7, 8990–9000 (2013). https://doi.org/10.1021/nn4035266

    Article  Google Scholar 

  8. Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007). https://doi.org/10.1002/anie.200602866

    Article  Google Scholar 

  9. Dong, Y., He, K., Yin, L., Zhang, A.: A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology. 18, 435602 (2007). https://doi.org/10.1088/0957-4484/18/43/435602

    Article  ADS  Google Scholar 

  10. Masunga, N., Mmelesi, O.K., Kefeni, K.K., Mamba, B.B.: Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: review. J. Environ. Chem. Eng. 7, 103179 (2019). https://doi.org/10.1016/j.jece.2019.103179

    Article  Google Scholar 

  11. Pawar, R.A., Patange, S.M., Shirsath, S.E.: Spin glass behavior and enhanced but frustrated magnetization in Ho3+ substituted Co-Zn ferrite interacting nanoparticles. RSC Adv. 6, 76590–76599 (2016). https://doi.org/10.1039/c6ra12541g

    Article  Google Scholar 

  12. Peddis, D., Cannas, C., Piccaluga, G., Agostinelli, E., Fiorani, D.: Spin-glass-like freezing and enhanced magnetization in ultra-small CoFe2O4nanoparticles. Nanotechnology. 21, 125705 (2010). https://doi.org/10.1088/0957-4484/21/12/125705

    Article  ADS  Google Scholar 

  13. Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Guérault, H., Greneche, J.-M.: Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys. Condens. Matter. 12, 7795–7805 (2000). https://doi.org/10.1088/0953-8984/12/35/314

    Article  ADS  Google Scholar 

  14. Lu, H.M., Zheng, W.T., Jiang, Q.: Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature. J. Phys. D. Appl. Phys. 40, 320–325 (2007). https://doi.org/10.1088/0022-3727/40/2/006

    Article  ADS  Google Scholar 

  15. Mlyadai, T., Miyahara, S., Matsuo, Y.: Ferrimagnetic resonance in copper ferrite, I. Cubic-Phase Single Crystal. J. Phys. Soc. Jpn. 20, 980–984 (1965). https://doi.org/10.1143/JPSJ.20.980

    Article  ADS  Google Scholar 

  16. Alex Goldman: Modern Ferrite Technology. (2006)

    Google Scholar 

  17. Thapa, D., Kulkarni, N., Mishra, S.N., Paulose, P.L., Ayyub, P.: Enhanced magnetization in cubic ferrimagnetic CuFe2O4nanoparticles synthesized from a citrate precursor: the role of Fe2+. J. Phys. D. Appl. Phys. 43, 195004 (2010). https://doi.org/10.1088/0022-3727/43/19/195004

    Article  ADS  Google Scholar 

  18. B.D. Cullity, C.D. Graham.: Introduction to magnetic materials. (2009)

    Google Scholar 

  19. Kulkarni, R.G., Patil, V.U.: Magnetic ordering in Cu-Zn ferrite. J. Mater. Sci. 17, 843–848 (1982). https://doi.org/10.1007/BF00540382

    Article  ADS  Google Scholar 

  20. Rana, M.U., Islam, M., Abbas, T.: Cation distribution and magnetic interactions in Zn-substituted CuFe2O4 ferrites. Mater. Chem. Phys. 65, 345–349 (2000). https://doi.org/10.1016/S0254-0584(00)00218-2

    Article  Google Scholar 

  21. Maria, K.H., Choudhury, S., Hakim, M.A.: Structural phase transformation and hysteresis behavior of Cu-Zn ferrites. Int. Nano Lett. 3, 42 (2013). https://doi.org/10.1186/2228-5326-3-42

    Article  Google Scholar 

  22. Rana, M.U., Ul-Islam, M., Ahmad, I., Abbas, T.: Determination of magnetic properties and Y–K angles in Cu–Zn–Fe–O system. J. Magn. Magn. Mater. 187, 242–246 (1998). https://doi.org/10.1016/S0304-8853(98)00077-8

    Article  ADS  Google Scholar 

  23. Verma, K., Kumar, A., Varshney, D.: Effect of Zn and Mg doping on structural , dielectric and magnetic properties of tetragonal CuFe 2 O 4. Curr. Appl. Phys. 13, 467–473 (2013). https://doi.org/10.1016/j.cap.2012.09.015

    Article  ADS  Google Scholar 

  24. Hankare, P.P., Kadam, M.R., Patil, R.P., Garadkar, K.M., Sasikala, R., Tripathi, A.K.: Effect of zinc substitution on structural and magnetic properties of copper ferrite. J. Alloys Compd. 501, 37–41 (2010). https://doi.org/10.1016/j.jallcom.2010.03.178

    Article  Google Scholar 

  25. Gautam, N., Thirupathi, G., Singh, R.: Effect of Zn-doping on structural and magnetic properties of copper ferrite nanoparticles. AIP Conf. Proc. 1731, (2016). https://doi.org/10.1063/1.4947753

  26. Atif, M., Nadeem, M., Grössinger, R., Turtelli, R.S.: Studies on the magnetic, magnetostrictive and electrical properties of sol-gel synthesized Zn doped nickel ferrite. J. Alloys Compd. 509, 5720–5724 (2011). https://doi.org/10.1016/j.jallcom.2011.02.163

    Article  Google Scholar 

  27. Subha, A., Shalini, M.G., Sahu, B., Sahoo, S.C.: Structural transformation and magnetic properties of copper ferrite nanoparticles prepared by sol–gel method. J. Mater. Sci. Mater. Electron. 29, 20790–20799 (2018). https://doi.org/10.1007/s10854-018-0221-8

    Article  Google Scholar 

  28. Smit, J., Wijn, H.P.J.: Ferrites. Philips Technical Library, Eindhoven (1959)

    Google Scholar 

  29. Mazen, S.A., Mansour, S.F., Zaki, H.M.: Some physical and magnetic properties of Mg-Zn ferrite. Cryst. Res. Technol. 38, 471–478 (2003). https://doi.org/10.1002/crat.200310059

    Article  Google Scholar 

  30. Cullity, B.D.: Elements of X-ray diffraction. (2014)

    Google Scholar 

  31. Wang, Z., Lazor, P., Saxena, S., Artioli, G.: High-pressure Raman spectroscopic study of spinel (ZnCr2O4). J. Solid State Chem. 165, 165–170 (2002). https://doi.org/10.1006/jssc.2002.9527

    Article  ADS  Google Scholar 

  32. Chandramohan, P., Srinivasan, M.P., Velmurugan, S., Narasimhan, S.V.: Cation distribution and particle size effect on Raman spectrum of CoFe2O4. J. Solid State Chem. 184, 89–96 (2011). https://doi.org/10.1016/j.jssc.2010.10.019

    Article  ADS  Google Scholar 

  33. Chithra, M., Anumol, C.N., Argish, V., Sahu, B., Sahoo, S.C.: Tailoring magnetic properties of cobalt ferrite nanoparticles by different divalent cation substitution. J. Mater. Sci. Mater. Electron. 29, 813–822 (2018). https://doi.org/10.1007/s10854-017-7976-1

    Article  Google Scholar 

  34. Chithra, M., Anumol, C.N., Sahu, B., Sahoo, S.C.: Structural and magnetic properties of Zn X Co 1−X Fe 2 O 4 nanoparticles: nonsaturation of magnetization. J. Magn. Magn. Mater. 424, 174–184 (2017). https://doi.org/10.1016/j.jmmm.2016.10.064

    Article  ADS  Google Scholar 

  35. Dash, J., Prasad, S., Venkataramani, N., Krishnan, R., Kishan, P., Kumar, N., Kulkarni, S.D., Date, S.K.: Study of magnetization and crystallization in sputter deposited LiZn ferrite thin films. J. Appl. Phys. 86, 3303–3311 (1999). https://doi.org/10.1063/1.371206

    Article  ADS  Google Scholar 

  36. Kulkarni, P.D., Prasad, S., Venkataramani, N., Krishnan, R., Pang, W., Guha, A., Woodward, R.C., Stamps, R.L.: The high field magnetization in the RF sputter deposited copper ferrite thin films. Proc. 9th Int. Conf. Ferrites, p. 201. [25]. Wiley, San Fr. 2004 (2010)

  37. Sahoo, S.C., Venkataramani, N., Prasad, S., Bohra, M., Krishnan, R.: Stability of nonthermodynamic equilibrium cation distribution frozen during pulsed laser deposition of Co-ferrite thin films. Appl. Phys. A Mater. Sci. Process. 98, 889–894 (2010). https://doi.org/10.1007/s00339-009-5471-0

    Article  ADS  Google Scholar 

  38. Najmoddin, N., Beitollahi, A., Devlin, E., Kavas, H., Mohseni, S.M., Åkerman, J., Niarchos, D., Rezaie, H., Muhammed, M., Toprak, M.S.: Magnetic properties of crystalline mesoporous Zn-substituted copper ferrite synthesized under nanoconfinement in silica matrix. Microporous Mesoporous Mater. 190, 346–355 (2014). https://doi.org/10.1016/j.micromeso.2014.02.033

    Article  Google Scholar 

  39. Sharma, R., Singhal, S.: Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue. Phys. B Condens. Matter. 414, 83–90 (2013). https://doi.org/10.1016/j.physb.2013.01.015

    Article  ADS  Google Scholar 

  40. Haque, M.M., Huq, M., Hakim, M.A.: Effect of Zn 2 + substitution on the magnetic properties of Mg1 - x Zn x Fe 2 O 4 ferrites. Phys. B Condens. Matter. 404, 3915–3921 (2009). https://doi.org/10.1016/j.physb.2009.07.124

    Article  ADS  Google Scholar 

  41. Yafet, Y., Kittel, C.: Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290–294 (1952). https://doi.org/10.1103/PhysRev.87.290

    Article  ADS  Google Scholar 

  42. Sumangala, T.P., Mahender, C., Venkataramani, N., Prasad, S.: A study of nanosized magnesium ferrite particles with high magnetic moment. J. Magn. Magn. Mater. 382, 225–232 (2015). https://doi.org/10.1016/j.jmmm.2015.01.056

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subasa C. Sahoo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subha, A., Shalini, M.G., Rout, S. et al. Magnetic Ordering and Enhancement of Magnetization in Zinc-Substituted Copper Ferrite Nanoparticles. J Supercond Nov Magn 33, 3577–3586 (2020). https://doi.org/10.1007/s10948-020-05613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05613-z

Keywords

Navigation