Skip to main content
Log in

Experimental Study of the Magnetic Field Distribution and Shape of Domains Near the Surface of a Type-I Superconductor in the Intermediate State

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The importance of accounting for the inhomogeneity of the magnetic field distribution and roundness of domain walls near the surface of type-I superconductors in the intermediate state for forming the equilibrium flux structure was predicted by Landau eight decades ago. Further studies confirmed this prediction and extended it to all equilibrium properties of this state. Here we report on direct depth-resolved measurements of the field distribution and shape of domains near the surface of high-purity type-I (indium) films in a perpendicular field using Low-Energy Muon Spin Rotation spectroscopy. We find that at low applied fields (in about half of the field range of the intermediate state) the field distribution and domains’ shape agrees with that proposed by Tinkham. However, for high fields our data suggest that reality differs from theoretical expectations. In particular, the width of the superconducting laminae can expand near the surface leading to formation of a maximum in the static magnetic field in the current-free space outside the sample. A possible interpretation of these experimental results is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The healing length Lh is an effective width of a near-surface spatial layer over which the strongly non-uniform induction inside the sample relaxes to its uniform state away from it. The term “effective” implies, that within this layer the field distribution in both in- and out-of-plain projections remains the same as the induction distribution inside the sample; and at distances larger than Lh the field is undisturbed and equal to the applied field H0.

  2. In spite of the large value of the mean free path, an ultimate test of purity of a superconducting sample is reproducibility of its magnetization curve measured with the sample cooled in zero and in non-zero field (see [12] for more details).

  3. This can be understood as follows. Thermodynamics of the IS is based on condition of minimization of the sample free energy [6, 8]. Bending of the field lines makes positive contribution in the free energy and therefore it cannot be strong due to requirement of thermodynamics (see [12] for more details).

References

  1. Seul, M., Andelman, D.: Science 267, 476 (1995)

    ADS  Google Scholar 

  2. Faber, I.T.: Proc. Roy. Soc. A 248, 460 (1958)

    ADS  Google Scholar 

  3. Livingston, J.D., DeSorbo, W.: In: Parks, R. D. (ed.) Superconductivity, vol. 2, p 1235. Marcel Dekker, New York (1969)

  4. Huebener, R.P.: Magnetic Flux Structures in Superconductors, 2nd edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  5. Shoenberg, D.: Superconductivity, 2nd edn. Cambridge University Press, Cambridge (1962)

    MATH  Google Scholar 

  6. Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, New York (1996)

    Google Scholar 

  7. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Elsevier, Amsterdam (1984)

    Google Scholar 

  8. Kozhevnikov, V., Wijngaarden, R.J., de Wit, J., Van Haesendonck, C.: PRB 89, 100503(R) (2014)

    ADS  Google Scholar 

  9. Kozhevnikov, V., Van Haesendonck, C.: Phys. Rev. B 90, 104519 (2014)

    ADS  Google Scholar 

  10. Kozhevnikov, V., Valente-Feliciano, A.-M., Curran, P.J., Suter, A., Liu, A.H., Richter, G., Morenzoni, E., Bending, S.J., Van Haesendonck, C.: PRB 95, 174509 (2017)

    ADS  Google Scholar 

  11. Kozhevnikov, V., Valente-Feliciano, A.-M., Curran, P.J., Richter, G., Volodin, A., Suter, A., Bending, S.J., Van Haesendonck, C.: J. Supercond. Nov. Magnetism 31, 3433 (2018)

    Google Scholar 

  12. Kozhevnikov, V.: Thermodynamics of Magnetizing Materials and Superconductors. CRC Press, Boca Raton (2019)

    Google Scholar 

  13. Landau, L.D.: Zh.E.T.F. 7, 371 (1937)

    Google Scholar 

  14. Tamm, I.E.: Fundamentals of the Theory of Electricity. Mir, Moscow (1979)

    Google Scholar 

  15. Landau, L.D.: Nature 147, 688 (1938)

    ADS  Google Scholar 

  16. Landau, L.D.: Zh.E.T.F. 13, 377 (1943)

    Google Scholar 

  17. De Gennes, P.G.: Superconductivity of Metals and Alloys. Perseus Book Publishing, L.L.C. (1966)

    MATH  Google Scholar 

  18. Meshkovsky, A.G., Shalnikov, A.I.: Zh. Eksp. Teor. Fiz. 17, 851 (1947)

    Google Scholar 

  19. Sharvin, Y.V.: Zh.E.T.F. 33, 1341 (1957). [Sov. Phys. JETP 33, 1031 (1958)]

    Google Scholar 

  20. Abrikosov, A.A.: Fundamentals of the Theory of Metals. Elsevier Science Pub Co., Amsterdam (1988)

    Google Scholar 

  21. Gorent, R.N., Tinkham, M.: J. Low Temp. Phys. 5, 465 (1971)

    ADS  Google Scholar 

  22. Marchenko, V.I.: Zh. Eksp. Teor. Fiz. 71, 2194 (1976). [JETP 44, 1156 (1976)]

    Google Scholar 

  23. Maxwell, J.C.: A Treatise on Electricity and Magnetism, 2nd edn., vol. II. Clarendon Press, Oxford (1881)

    Google Scholar 

  24. Kozhevnikov, V., Suter, A., Fritzsche, H., Gladilin, V., Volodin, A., Moorkens, T., Trekels, M., Cuppens, J., Wojek, B.M., Prokscha, T., Morenzoni, E., Nieuwenhuys, G.J., Van Bael, M.J., Temst, K., Van Haesendonck, C., Indekeu, J.O.: Phys. Rev. B 87, 104508 (2013)

    ADS  Google Scholar 

  25. Sonier, J.E., Brewer, J.H., Kiefl, R.F.: Rev. Mod. Phys. 72, 769 (2000)

    ADS  Google Scholar 

  26. Yaouanc, A., Dalmas de Reotier, P.: Muon Spin Rotation, Relaxation, and Resonance. Oxford University Press, London (2011)

    Google Scholar 

  27. Eckstein, W.: Computer Simulation of Ion-Solid Interactions. Springer, Berlin (1991)

    Google Scholar 

  28. Morenzoni, E., Gluckler, H., Prokscha, T., Khasanov, R., Luetkens, H., Birke, M., Forgan, E.M., Niedermayer, C., Pleines, M.: Nucl. Instr. Meth. B 192, 254 (2002)

    ADS  Google Scholar 

  29. Suter, A., Morenzoni, E., Garifianov, N., Khasanov, R., Kirk, E., Luetkens, H., Prokscha, T., Horisberger, M.: Phys. Rev. B 72, 024506 (2005)

    ADS  Google Scholar 

  30. Kubo, R., Toyabe, T.: In: Blinc, R. (ed.) Magnetic Resonance and Relaxation. North-Holland, Amsterdam (1967)

  31. Prokscha, T., Morenzoni, E., Eshchenko, D.G., Garifianov, N., Glückler, H., Khasanov, R., Luetkens, H., Suter, A.: Phys. Rev. Lett. 98, 227401 (2007)

    ADS  Google Scholar 

  32. Chang, G.K., Serin, B.: Phys. Rev. 145, 274 (1966)

    ADS  Google Scholar 

  33. Niedermayer, C., Forgan, E.M., Gluckler, H., Hofer, A., Morenzoni, E., Pleines, M., Prokscha, T., Riseman, T.M., Birke, M., Jackson, T.J., Litterst, J., Long, M.W., Luetkens, H., Schatz, A., Schatz, G.: Phys. Rev Lett. 83, 3932 (1999)

    ADS  Google Scholar 

  34. Prokscha, T., Morenzoni, E., Deiters, K., Foroughi, F., George, D., Kobler, R., Suter, A., Vrankovic, V.: Nucl. Instr. Meth. Phys. Res. A 595, 317 (2008)

    ADS  Google Scholar 

  35. Suter, A., Wojek, B.M.: Phys. Procedia 30, 69 (2012)

    ADS  Google Scholar 

  36. Andrew, E.R.: Proc. Roy. Soc. (London) A194, 80 (1948)

    ADS  Google Scholar 

  37. Desirant, M., Shoenberg, D.: Proc. Roy. Soc. Lond. A 194, 63 (1948)

    ADS  Google Scholar 

  38. Egorov, V.S., Solt, G., Baines, C., Herlach, D., Zimmermann, U.: Phys. Rev. B 64, 024524 (2001)

    ADS  Google Scholar 

  39. Shubnikov, L.W., Nakhutin, I.E.: Nature 139, 589 (1937)

    ADS  Google Scholar 

  40. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  41. Fisher, M.E.: Private communication

  42. Morenzoni, E., Prokscha, T., Suter, A., Luetkens, H., Khasanov, R.: J. Phys.: Condens. Matter 16, S4583 (2004)

    ADS  Google Scholar 

  43. Braunbeck, W.: Z. Physik 112, 753 (1939)

    ADS  Google Scholar 

  44. Brandt, E.H.: Science 243, 349 (1989)

    ADS  Google Scholar 

Download references

Acknowledgments

The muon measurements were performed at the Swiss Muon Source Sμ S, Paul Scherrer Institute, Villigen, Switzerland.

Funding

This work was supported by the National Science Foundation (Grant No. DMR 0904157), by the Research Foundation – Flanders (FWO, Belgium) and by the Flemish Concerted Research Action (BOF KU Leuven, GOA/14/007) research program. V.K. received support from the sabbatical fund of the Tulsa Community College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kozhevnikov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The muon stopping distribution for a given material is calculated with the Monte Carlo code TRIM.SP [27, 28]. Stopping profiles for various muon implantation energies for indium are shown in Fig.13. Figure 14 depicts the muon stopping distribution in solid N2 for a muon implantation energy of E = 14.3 keV.

Fig. 13
figure 13

Depth profile of the stopping distances of muons of different energies in indium

Fig. 14
figure 14

Muon stopping distribution in solid nitrogen for an implantation energy E = 14.3 keV

The average stopping distance (implantation depth) \(\overline {x}(E)\) at given muon energy E is calculated as

$$ \overline{x}(E)={\int}_{0}^{\infty} xf(x,E)dx, $$

where x is the stopping distance and f(x,E) is the stopping distances distribution shown in Figs. 13 and 14.

The out-of-plane coordinate z (shown in Fig. 1b) for the data obtain with muons implanted into the sample equals \(-\overline {x}(E)\); and z for the data measured outside is \(z={\Delta } - \overline {x}(E)\), where Δ is the thickness of the nitrogen overlayer. Details about the depth profiles of the low-energy muons are available in [28, 42].

Figures 15 and 16 show representative data for depolarization rates σTB and σLR, respectively, recorded with IN-A sample without (panels (a)) and with (panels (b)) N2 overlayes.

Fig. 15
figure 15

Depolarization rates σTB recorded by the Top and Bottom counters inside (a) and outside (b) of IN-A sample at distances from the surface as indicated. Vertical dashed line marks the critical field Hci

Fig. 16
figure 16

Depolarization rates σLR recorded by the Left and Right counters inside (a) and outside (b) of IN-A sample at distances from the surface as indicated. Vertical dashed line marks the critical field Hci

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikov, V., Suter, A., Prokscha, T. et al. Experimental Study of the Magnetic Field Distribution and Shape of Domains Near the Surface of a Type-I Superconductor in the Intermediate State. J Supercond Nov Magn 33, 3361–3376 (2020). https://doi.org/10.1007/s10948-020-05576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05576-1

Keywords

Navigation