Skip to main content
Log in

Structural, Optical, Magnetic, and Electrical Properties of Ni0.5Co0.5Al2O4 System

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this present work, we have focused on the effect of cobalt substitution in the nickel aluminate system. The aluminate samples were synthesized by the chemical precipitation method. The structural and optical properties of the NiAl2O4, CoAl2O4, and Ni0.5Co0.5Al2O4 samples were studied through X-ray diffraction and UV-DRS absorbance spectral analysis. The XRD pattern confirms the cubic phase with the space group of Fd-3 m through its analysis of the diffraction peaks. The UV absorption peaks around at 360, 480, 551, 580, and 621 nm extend the formation of NiAl2O4, CoAl2O4, and Ni0.5Co0.5Al2O4 system. The surface morphological images of the samples were scanned by using the scanning electron microscope. The room temperature magnetic nature of the aluminate samples was carried out using VSM, and the observed result reveals a weak ferromagnetic and super-paramagnetic nature for NiAl2O4 and Ni0.5Co0.5Al2O4, respectively. The temperature dependence impedance spectra and AC conductivity were measured using an impedance analyzer at selected temperatures, and that reveals the bulk resistance of the grain and the grain boundary region of the sample. The observed results were analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abaide, E.R., Anchieta, C.G., Foletto, V.S., Reinehr, B., Nunes, L.F., Kuhn, R.C., Mazutti, M.A., Foletto, E.L.: Production of copper and cobalt aluminate spinels and their application as supports for inulinase immobilization mater. Res. 18, 1062–1069 (2015)

    Google Scholar 

  2. Farhadi, S., Panahandehjoo, S.: Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: A novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions. Appl. Catal. A Gen. 382, 293–302 (2010)

    Article  Google Scholar 

  3. Mazza, D., Delmastro, A., Ronchetti, S.: Co, Ni, cu aluminates supported on mullite precursors via a solid state reaction. J. Eur. Ceram. Soc. 20, 699–706 (2000)

    Article  Google Scholar 

  4. Maddahfar, M., Ramezani, M., Sadeghi, M., Sobhani-Nasab, A.: NiAl2O4 nanoparticles synthesis and characterization through modify sol–gel method and its photo-catalyst application. J. Mater. Sci. Mater. Electron. 26, 7745–7750 (2015)

    Article  Google Scholar 

  5. Koonsaeng, N., Laobuthee, A., Hasin, P.: Controllable synthesis of metallo-alkoxide precursor-derived nickel aluminate spinels using TEA-gel process and morphology-dependent reducibility. Mater. Chem. Phys. 182, 287–297 (2016)

    Article  Google Scholar 

  6. Harshit, A., Yadav, T.P., Srivastava, O.N., M.A.: Shaz: Cation distribution in nanocrystalline (co, Ni) Al2O4 spinel. Ceram. Int. 43, 16986–16992 (2017)

    Article  Google Scholar 

  7. Suguna, S., Shankar, S., Jaganathan, S.K., Manikandan, A.: Novel Synthesis and Characterization Studies of Spinel NixCo1−xAl2O4 (x=0.0 to 1.0) Nano-Catalysts for the Catalytic Oxidation of Benzyl Alcohol. J. Nanosci. Nanotechnol. 18, 1019–1026 (2018)

    Article  Google Scholar 

  8. Gouda, M.E., Bayoumy, W.A.A.: Structural, optical and magnetic properties of Ni-aluminates with co substitution Int. J. Sci. Eng. Res. 6, 328–333 (2015)

    Google Scholar 

  9. Lu, T., Pan, Y.: Analysis of thermal explosion process for preparing ferromagnetic Al2O3-based Cermets. Mater. Manuf. Process. 27, 914–918 (2012)

    Article  ADS  Google Scholar 

  10. He, G., Liu, J., Jiang, X., Li, J.: Infrared emission properties of Cr3+ doped NiAl2O4 spinel ceramics. Adv. Funct. Mater. 617–624 (2018)

  11. Merikhi, J., Jungk, H.-O., Feldman, C.: Sub-micrometer CoAl2O4 pigment particles synthesis and preparation of coatings. J. Mater. Chem. 10, 1311–1314 (2000)

    Article  Google Scholar 

  12. Yan, J., Huang, J., Zhang, T., Tian, H., Yu, J., Zhang, L., Zhang, Y.: Investigation of the microstructure, Cation distribution and optical properties of nanoscale NixMg1-xAl2O4 spinel pigments. Ceram. Int. 45, 14073–14083 (2019)

    Article  Google Scholar 

  13. Kurien, S., Mathew, J., Sebastian, S., Potty, S.N., George, K.C.: Dielectric behavior and ac electrical conductivity of nano-crystalline nickel aluminate. Mater. Chem. Phys. 98, 470–476 (2006)

    Article  Google Scholar 

  14. Jagadeeshwaran, C., Madhan, K., Murugaraj, R.: Size effect and order–disorder phase transition in MgAl2O4: synthesized by co-precipitation method. J. Mater. Sci. Mater. Electron. 29, 18923–18934 (2018)

    Article  Google Scholar 

  15. Nelson, J.B., Riley, D.P.: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57, 160–171 (1945)

    Article  ADS  Google Scholar 

  16. Gaudonn, M., Robertson, L.C., Lataste, E., Duttine, M., Menetrier, M., Demourgues, A.: Cobalt and nickel aluminate spinels: blue and cyan pigments Ceram. Int. 40, 5201–5207 (2014)

    Google Scholar 

  17. Karmakar, S., Behera, D.: Non-overlapping small polaron tunneling conduction coupled dielectric relaxation in weak ferromagnetic NiAl2O4. J. Phys. Condens. Matter. 31, 245701 (2018)

    Article  ADS  Google Scholar 

  18. Jayasree, S., Manikandan, A., Mohideen, A.M.U., Barathiraja, C., Antony, S.A.: Comparative Study of Combustion Methods, Opto-Magneticand Catalytic Properties of Spinel CoAl2O4 Nano and Microstructures. Adv. Sci. Eng. Med. 7, 1–11 (2015)

    Article  Google Scholar 

  19. Yadav, T.P., Tiwari, R.S., Srivastava, O.N., Mukhopadhyay, N.K.: Evolution of a nanocrystalline (co, Ni) Al2O4 spinel phase from quasicrystalline precursor. Int. J. Appl. Ceram. Technol. 5, 449–457 (2008)

    Article  Google Scholar 

  20. Nandana, K.R., Ruban Kumar, A.: Structural and electrical properties of Ca0.9Dy0.1MnO3 prepared by sol-gel technique. J. Mater. Res. Technol. 8(3), 2996–3003 (2019)

    Article  Google Scholar 

  21. Joseph, D., Kaliyaperumal, C., Mumoorthy, S., Paramasivam, T.: Dependence on temperature of the electrical properties of nanocrystalline Y2Ti2O7 ceramics. Ceram. Int. 44, 5426–5432 (2018)

    Article  Google Scholar 

  22. Joshi, J.H., Kanchan, D.K., Joshi, M.J., Jethva, H.O., Parikh, K.D.: Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017)

    Article  Google Scholar 

  23. Bouzidi, S., Hassen, A.B., Dhahri, J., Khirouni, K.: Structural and dielectric properties of BaTi0.5 (Co0.33 Mo0.17) O3 perovskite ceramic. J. Alloys Compd. 781, 936–944 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Murugaraj.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeeshwaran, C., Murugaraj, R. Structural, Optical, Magnetic, and Electrical Properties of Ni0.5Co0.5Al2O4 System. J Supercond Nov Magn 33, 1765–1772 (2020). https://doi.org/10.1007/s10948-020-05427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05427-z

Keywords

Navigation